BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 29121449)

  • 1. Effect of Solvents on the Behavior of Lithium and Superoxide Ions in Lithium-Oxygen Battery Electrolytes.
    Smirnov VS; Kislenko SA
    Chemphyschem; 2018 Jan; 19(1):75-81. PubMed ID: 29121449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of water on the behaviour of lithium and superoxide ions in aprotic solvents.
    Sivakov V; Pavlov S; Smirnov V; Kislenko S
    Phys Chem Chem Phys; 2021 Oct; 23(39):22375-22383. PubMed ID: 34608477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of Lithium Ions and Superoxide Anions in EMI-TFSI and Dimethyl Sulfoxide.
    Jung SH; Federici Canova F; Akagi K
    J Phys Chem A; 2016 Jan; 120(3):364-71. PubMed ID: 26689893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life of superoxide in aprotic Li-O₂ battery electrolytes: simulated solvent and counter-ion effects.
    Scheers J; Lidberg D; Sodeyama K; Futera Z; Tateyama Y
    Phys Chem Chem Phys; 2016 Apr; 18(15):9961-8. PubMed ID: 26947132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Cation Size on Solvation and Association with Superoxide Anion in Aprotic Solvents.
    Smirnov VS; Kislenko SA
    Chemphyschem; 2019 Jul; 20(15):1960-1966. PubMed ID: 31189020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical vs Electrochemical Formation of Li
    Yin W; Grimaud A; Lepoivre F; Yang C; Tarascon JM
    J Phys Chem Lett; 2017 Jan; 8(1):214-222. PubMed ID: 27960058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential Solvation of Lithium Cations and Impacts on Oxygen Reduction in Lithium-Air Batteries.
    Zheng D; Qu D; Yang XQ; Lee HS; Qu D
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19923-9. PubMed ID: 26301499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and Computational Analysis of the Solvent-Dependent O2/Li(+)-O2(-) Redox Couple: Standard Potentials, Coupling Strength, and Implications for Lithium-Oxygen Batteries.
    Kwabi DG; Bryantsev VS; Batcho TP; Itkis DM; Thompson CV; Shao-Horn Y
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):3129-34. PubMed ID: 26822277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics.
    Ong MT; Verners O; Draeger EW; van Duin AC; Lordi V; Pask JE
    J Phys Chem B; 2015 Jan; 119(4):1535-45. PubMed ID: 25523643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular motions of acetonitrile molecules in the solvation shell of lithium ions.
    Chen X; Kuroda DG
    J Chem Phys; 2020 Oct; 153(16):164502. PubMed ID: 33138407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes.
    Chen X; Zhang Q
    Acc Chem Res; 2020 Sep; 53(9):1992-2002. PubMed ID: 32883067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentrated Electrolyte for the Sodium-Oxygen Battery: Solvation Structure and Improved Cycle Life.
    He M; Lau KC; Ren X; Xiao N; McCulloch WD; Curtiss LA; Wu Y
    Angew Chem Int Ed Engl; 2016 Dec; 55(49):15310-15314. PubMed ID: 27809386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate theory of solvent exchange and kinetics of Li(+) - BF4 (-)/PF6 (-) ion pairs in acetonitrile.
    Dang LX; Chang TM
    J Chem Phys; 2016 Sep; 145(9):094502. PubMed ID: 27608999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1,2-Dimethoxyethane Degradation Thermodynamics in Li-O
    Carboni M; Marrani AG; Spezia R; Brutti S
    Chemistry; 2016 Nov; 22(48):17188-17203. PubMed ID: 27621220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium solvation in dimethyl sulfoxide-acetonitrile mixtures.
    Semino R; Zaldívar G; Calvo EJ; Laria D
    J Chem Phys; 2014 Dec; 141(21):214509. PubMed ID: 25481154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries.
    Kwabi DG; Batcho TP; Amanchukwu CV; Ortiz-Vitoriano N; Hammond P; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2014 Aug; 5(16):2850-6. PubMed ID: 26278088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry.
    McCloskey BD; Bethune DS; Shelby RM; Girishkumar G; Luntz AC
    J Phys Chem Lett; 2011 May; 2(10):1161-6. PubMed ID: 26295320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium ion solvation by ethylene carbonates in lithium-ion battery electrolytes, revisited by density functional theory with the hybrid solvation model and free energy correction in solution.
    Cui W; Lansac Y; Lee H; Hong ST; Jang YH
    Phys Chem Chem Phys; 2016 Sep; 18(34):23607-12. PubMed ID: 27506245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating the reduction reaction pathways via manipulating the solvation shell and donor number of the solvent in Li-CO
    Zhang W; Zhang F; Liu S; Pang WK; Lin Z; Guo Z; Chai L
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2219692120. PubMed ID: 36996113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.
    Carvalho NF; Pliego JR
    Phys Chem Chem Phys; 2015 Oct; 17(40):26745-55. PubMed ID: 26395146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.