BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

596 related articles for article (PubMed ID: 29121576)

  • 1. Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) F.K. Mey in field-contaminated soils.
    Rosenfeld CE; Chaney RL; Martínez CE
    Sci Total Environ; 2018 Mar; 616-617():279-287. PubMed ID: 29121576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous 'Ganges' in field trials.
    Jacobs A; Drouet T; Sterckeman T; Noret N
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8176-8188. PubMed ID: 28144868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of edaphic conditions and nitrogen fertilizers on cadmium and zinc phytoextraction efficiency of Noccaea caerulescens.
    Jacobs A; Noret N; Van Baekel A; Liénard A; Colinet G; Drouet T
    Sci Total Environ; 2019 May; 665():649-659. PubMed ID: 30776637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure.
    Bayçu G; Gevrek-Kürüm N; Moustaka J; Csatári I; Rognes SE; Moustakas M
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2840-2850. PubMed ID: 27838905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation.
    Milner MJ; Mitani-Ueno N; Yamaji N; Yokosho K; Craft E; Fei Z; Ebbs S; Clemencia Zambrano M; Ma JF; Kochian LV
    Plant J; 2014 May; 78(3):398-410. PubMed ID: 24547775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.
    Broadhurst CL; Chaney RL; Davis AP; Cox A; Kumar K; Reeves RD; Green CE
    Int J Phytoremediation; 2015; 17(1-6):25-39. PubMed ID: 25174422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions.
    Tlustoš P; Břendová K; Száková J; Najmanová J; Koubová K
    Int J Phytoremediation; 2016; 18(2):110-5. PubMed ID: 26280307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards practical cadmium phytoextraction with Noccaea caerulescens.
    Simmons RW; Chaney RL; Angle JS; Kruatrachue M; Klinphoklap S; Reeves RD; Bellamy P
    Int J Phytoremediation; 2015; 17(1-6):191-9. PubMed ID: 25360891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens.
    Lombi E; Tearall KL; Howarth JR; Zhao FJ; Hawkesford MJ; McGrath SP
    Plant Physiol; 2002 Apr; 128(4):1359-67. PubMed ID: 11950984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription profiling of the metal-hyperaccumulator Thlaspi caerulescens (J. & C. PRESL).
    Plessl M; Rigola D; Hassinen V; Aarts MG; Schat H
    Z Naturforsch C J Biosci; 2005; 60(3-4):216-23. PubMed ID: 15948586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium leaching from micro-lysimeters planted with the hyperaccumulator Thlaspi caerulescens: experimental findings and modeling.
    Ingwersen J; Bücherl B; Neumann G; Streck T
    J Environ Qual; 2006; 35(6):2055-65. PubMed ID: 17071874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Stoichiometry of multi-elements in the zinc-cadmium hyperaccumulator Thlaspi caerulescens grown hydroponically under different zinc concentrations determined by ICP-AES].
    Han WX; Xu YM; Du W; Tang AH; Jiang RF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep; 29(9):2565-7. PubMed ID: 19950676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochar-assisted phytoextraction of Cd and Zn by Noccaea caerulescens on a contaminated soil: A four-year lysimeter study.
    Rees F; Sterckeman T; Morel JL
    Sci Total Environ; 2020 Mar; 707():135654. PubMed ID: 31784181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions.
    Saison C; Schwartz C; Morel JL
    Int J Phytoremediation; 2004; 6(1):49-61. PubMed ID: 15224775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time.
    Dessureault-Rompré J; Luster J; Schulin R; Tercier-Waeber ML; Nowack B
    Environ Pollut; 2010 May; 158(5):1955-62. PubMed ID: 19913965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.
    Zhao FJ; Hamon RE; Lombi E; McLaughlin MJ; McGrath SP
    J Exp Bot; 2002 Mar; 53(368):535-43. PubMed ID: 11847252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.
    Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ
    Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.
    Plaza S; Tearall KL; Zhao FJ; Buchner P; McGrath SP; Hawkesford MJ
    J Exp Bot; 2007; 58(7):1717-28. PubMed ID: 17404382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations.
    Delorme TA; Gagliardi JV; Angle JS; Chaney RL
    Can J Microbiol; 2001 Aug; 47(8):773-6. PubMed ID: 11575505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.