These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29121878)

  • 21. Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation.
    Zhang ZY; Chu RY; Zhou XT; Dai JH; Sun XH; Hoffman MR; Zhang XR
    Invest Ophthalmol Vis Sci; 2009 May; 50(5):2147-53. PubMed ID: 19136715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of femtosecond and excimer lasers on implanted KAMRA corneal inlay in animal models.
    Sammouh FK; Baban TA; Dandan WN; Warrak EL
    J Fr Ophtalmol; 2017 May; 40(5):403-407. PubMed ID: 28359626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of Femtosecond Laser Intrastromal Incision Location Using Optical Coherence Tomography.
    Wang L; Jiang L; Hallahan K; Al-Mohtaseb ZN; Koch DD
    Ophthalmology; 2017 Aug; 124(8):1120-1125. PubMed ID: 28412070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aberration compensation between anterior and posterior corneal surfaces after Small incision lenticule extraction and Femtosecond laser-assisted laser in-situ keratomileusis.
    Li X; Wang Y; Dou R
    Ophthalmic Physiol Opt; 2015 Sep; 35(5):540-51. PubMed ID: 26087672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Corneal intrastromal tissue modeling with the femtosecond laser.
    Meltendorf C; Deller T; Ackermann H; von Pape U
    Graefes Arch Clin Exp Ophthalmol; 2011 Nov; 249(11):1661-6. PubMed ID: 21607636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the Femtosecond Laser on an Intracorneal Inlay for Surgical Compensation of Presbyopia during Cataract Surgery: Scanning Electron Microscope Imaging.
    Ibarz M; Rodríguez-Prats JL; Hernández-Verdejo JL; Tañá P
    Curr Eye Res; 2017 Feb; 42(2):168-173. PubMed ID: 27260475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Three-Year Observation of Corneal Backscatter After Small Incision Lenticule Extraction (SMILE).
    Han T; Zhao J; Shen Y; Chen Y; Tian M; Zhou X
    J Refract Surg; 2017 Jun; 33(6):377-382. PubMed ID: 28586497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New intrastromal corneal reshaping procedure using high-intensity femtosecond laser pulses.
    Han T; Li D; Hersh PS; Suckewer S
    J Cataract Refract Surg; 2015 Jun; 41(6):1137-44. PubMed ID: 26100961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bilateral Ectasia After Femtosecond Laser-Assisted Small Incision Lenticule Extraction (SMILE).
    Mattila JS; Holopainen JM
    J Refract Surg; 2016 Jul; 32(7):497-500. PubMed ID: 27400083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fate of lyophilized xenogeneic corneal lenticules in intrastromal implantation and epikeratophakia.
    Moore MB; Gebhardt BM; Verity SM; McDonald MB
    Invest Ophthalmol Vis Sci; 1987 Mar; 28(3):555-9. PubMed ID: 3549612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Femtosecond laser-assisted deep anterior lamellar keratoplasty with big-bubble technique for keratoconus.
    Lu Y; Chen X; Yang L; Xue C; Huang Z
    Indian J Ophthalmol; 2016 Sep; 64(9):639-642. PubMed ID: 27853010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An in vivo model of femtosecond laser intrastromal refractive surgery.
    Sletten KR; Yen KG; Sayegh S; Loesel F; Eckhoff C; Horvath C; Meunier M; Juhasz T; Kurtz RM
    Ophthalmic Surg Lasers; 1999; 30(9):742-9. PubMed ID: 10574496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Strength properties of rabbit cornea after femtosecond laser keratoplasty with and without different intracorneal implants].
    Pashtaev NP; Pozdeeva NA; Zotov VV; Sinitsyn MV; Shcheglova MA
    Vestn Oftalmol; 2018; 134(1):18-23. PubMed ID: 29543194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual outcomes and corneal changes after intrastromal femtosecond laser correction of presbyopia.
    Menassa N; Fitting A; Auffarth GU; Holzer MP
    J Cataract Refract Surg; 2012 May; 38(5):765-73. PubMed ID: 22520302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Femtosecond laser lenticule transplantation in rabbit cornea: experimental study.
    Liu H; Zhu W; Jiang AC; Sprecher AJ; Zhou X
    J Refract Surg; 2012 Dec; 28(12):907-11. PubMed ID: 23231741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Femtosecond Laser-Assisted Intra-Corneal Drug Delivery.
    Pallikaris IG; Kymionis GD; Plaka AD; Binder PS; Kontadakis GA; Tsoulnaras KI
    Semin Ophthalmol; 2015; 30(5-6):457-61. PubMed ID: 24506334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Femtosecond laser-assisted intrastromal arcuate keratotomy to reduce corneal astigmatism.
    Rückl T; Dexl AK; Bachernegg A; Reischl V; Riha W; Ruckhofer J; Binder PS; Grabner G
    J Cataract Refract Surg; 2013 Apr; 39(4):528-38. PubMed ID: 23395324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Femtosecond laser-assisted implantation of corneal stroma lenticule for keratoconus.
    Fasolo A; Galzignato A; Pedrotti E; Chierego C; Cozzini T; Bonacci E; Marchini G
    Int Ophthalmol; 2021 May; 41(5):1949-1957. PubMed ID: 33625651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of mechanical and femtosecond laser tunnel creation for intrastromal corneal ring segment implantation in keratoconus: prospective randomized clinical trial.
    Kubaloglu A; Sari ES; Cinar Y; Cingu K; Koytak A; Coşkun E; Ozertürk Y
    J Cataract Refract Surg; 2010 Sep; 36(9):1556-61. PubMed ID: 20692570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Comparative analysis of corneal aberrations after intrastromal segments and MyoRing implantation using femtosecond laser in patients with keratoconus].
    Pashtaev NP; Pozdeeva NA; Sinitsyn MV
    Vestn Oftalmol; 2017; 133(3):3-8. PubMed ID: 28745650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.