BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 29121887)

  • 1. Biological activities and chemical compositions of slime tracks and crude exopolysaccharides isolated from plasmodia of Physarum polycephalum and Physarella oblonga.
    Huynh TTM; Phung TV; Stephenson SL; Tran HTM
    BMC Biotechnol; 2017 Nov; 17(1):76. PubMed ID: 29121887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity activities and chemical characteristics of exopolysaccharides and intracellular polysaccharides of Physarum polycephalum microplasmodia.
    Do TTH; Lai TNB; Stephenson SL; Tran HTM
    BMC Biotechnol; 2021 Mar; 21(1):28. PubMed ID: 33773573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of medium composition on the growth and lipid production of microplasmodia of Physarum polycephalum.
    Truong KA; Stephenson SL; Phung TV; Tran HTM
    Biotechnol Prog; 2019 Nov; 35(6):e2873. PubMed ID: 31215765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial numbers increase during glucose deprivation in the slime mold Physarum polycephalum.
    Oettmeier C; Döbereiner HG
    Protoplasma; 2019 Nov; 256(6):1647-1655. PubMed ID: 31267225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. THE CHANGING PATTERN OF BIREFRINGENCE IN PLASMODIA OF THE SLIME MOLD, PHYSARUM POLYCEPHALUM.
    NAKAJIMA H; ALLEN RD
    J Cell Biol; 1965 May; 25(2):361-74. PubMed ID: 14287186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kanizsa illusory contours appearing in the plasmodium pattern of Physarum polycephalum.
    Tani I; Yamachiyo M; Shirakawa T; Gunji YP
    Front Cell Infect Microbiol; 2014; 4():10. PubMed ID: 24616883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple polypeptides immunologically related to beta-poly(L-malate) hydrolase (polymalatase) in the plasmodium of the slime mold Physarum polycephalum.
    Karl M; Holler E
    Eur J Biochem; 1998 Jan; 251(1-2):405-12. PubMed ID: 9492311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and partial characterization of haemagglutinins from plasmodia of Physarum polycephalum.
    Morita M; Nishi A
    J Gen Microbiol; 1992 Mar; 138(3):619-25. PubMed ID: 1593267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex population dynamics in a spatial microbial ecosystem with Physarum polycephalum.
    Epstein L; Dubois Z; Smith J; Lee Y; Harrington K
    Biosystems; 2021 Oct; 208():104483. PubMed ID: 34271083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change in zeta potential and membrane potential of slime mold Physarum polycephalum in response to chemical stimuli.
    Hato M; Ueda T; Kurihara K; Kobatake Y
    Biochim Biophys Acta; 1976 Feb; 426(1):73-80. PubMed ID: 174751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving Transport Networks With Cellular Automata Models Inspired by Slime Mould.
    Tsompanas MA; Sirakoulis GCh; Adamatzky AI
    IEEE Trans Cybern; 2015 Sep; 45(9):1887-99. PubMed ID: 25438333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum.
    Ricigliano V; Chitaman J; Tong J; Adamatzky A; Howarth DG
    Front Microbiol; 2015; 6():720. PubMed ID: 26236301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrophagus putrescentiae (Sarcoptiformes: Acaridae) in the in vitro cultures of slime molds (Mycetozoa): accident, contamination, or interaction?
    Michalczyk-Wetula D; Jakubowska M; Felska M; Skarżyński D; Mąkol J; Płonka PM
    Exp Appl Acarol; 2021 Jun; 84(2):445-458. PubMed ID: 33970406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for separation of pigments from plasmodia of the true slime molds, Physarum polycephalum and Physarum nudum.
    Majcherczyk A; Rakoczy L; Hüttermann A
    Anal Biochem; 1987 Jan; 160(1):178-83. PubMed ID: 3565750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual polyamines in slime molds Physarum polycephalum and Dictyostelium discoideum.
    Hamana K; Matsuzaki S
    J Biochem; 1984 Apr; 95(4):1105-10. PubMed ID: 6746590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral imaging method for studying Physarum polycephalum growth on polyaniline surface.
    Dimonte A; Fermi F; Berzina T; Erokhin V
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():11-4. PubMed ID: 26042684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1.
    Li W; Ji J; Chen X; Jiang M; Rui X; Dong M
    Carbohydr Polym; 2014 Feb; 102():351-9. PubMed ID: 24507291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of DNA replication in the nuclei of the slime mold Physarum polycephalum. Transplantation of nuclei by plasmodial coalescence.
    Guttes S; Guttes E
    J Cell Biol; 1968 Jun; 37(3):761-72. PubMed ID: 11905206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of a beta-galactan isolated from the nuclei of Physarum polycephalum.
    Farr DR; Horisberger M
    Biochim Biophys Acta; 1978 Feb; 539(1):37-40. PubMed ID: 564213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brainless but Multi-Headed: Decision Making by the Acellular Slime Mould Physarum polycephalum.
    Beekman M; Latty T
    J Mol Biol; 2015 Nov; 427(23):3734-43. PubMed ID: 26189159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.