BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 2912201)

  • 1. Ventricular function and fatty acid metabolism in neonatal piglet heart.
    Ascuitto RJ; Ross-Ascuitto NT; Chen V; Downing SE
    Am J Physiol; 1989 Jan; 256(1 Pt 2):H9-15. PubMed ID: 2912201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of fatty acid oxidation in the neonatal pig heart with hypoxia and reoxygenation.
    Ascuitto RJ; Ross-Ascuitto NT; Ramage D; McDonough KH
    J Dev Physiol; 1990 Nov; 14(5):291-4. PubMed ID: 2129245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical function and substrate oxidation in the neonatal pig heart subjected to pacing-induced tachycardia.
    Ascuitto RJ; Joyce JJ; Ross-Ascuitto NT
    Mol Genet Metab; 1999 Mar; 66(3):212-23. PubMed ID: 10066391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of the neonatal pig heart subjected to oxygen insufficiency.
    Uy R; Tede N; Ross-Ascuitto N; Ascuitto R
    Biol Neonate; 2004; 85(1):42-50. PubMed ID: 14631166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical function and fatty acid oxidation in the neonatal pig heart with ischemia and reperfusion.
    Ascuitto RJ; Ross-Ascuitto NT; Ramage D; McDonough KH
    J Dev Physiol; 1990 Nov; 14(5):249-57. PubMed ID: 2100742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation to ATP production in isolated biventricular working hearts from 2-week-old rabbits.
    Itoi T; Lopaschuk GD
    Pediatr Res; 1993 Dec; 34(6):735-41. PubMed ID: 8108185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium.
    Liedtke AJ; DeMaison L; Eggleston AM; Cohen LM; Nellis SH
    Circ Res; 1988 Mar; 62(3):535-42. PubMed ID: 3342476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolysis is predominant source of myocardial ATP production immediately after birth.
    Lopaschuk GD; Spafford MA; Marsh DR
    Am J Physiol; 1991 Dec; 261(6 Pt 2):H1698-705. PubMed ID: 1750528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Palmitate oxidation by isolated working fetal and newborn pig hearts.
    Werner JC; Sicard RE; Schuler HG
    Am J Physiol; 1989 Feb; 256(2 Pt 1):E315-21. PubMed ID: 2919670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatty acid and glucose utilization in isolated, working fetal pig hearts.
    Werner JC; Whitman V; Fripp RR; Schuler HG; Musselman J; Sham RL
    Am J Physiol; 1983 Jul; 245(1):E19-23. PubMed ID: 6869527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid metabolism in hearts containing elevated levels of CoA.
    Lopaschuk GD; Hansen CA; Neely JR
    Am J Physiol; 1986 Mar; 250(3 Pt 2):H351-9. PubMed ID: 3953832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion.
    Wang P; Fraser H; Lloyd SG; McVeigh JJ; Belardinelli L; Chatham JC
    J Pharmacol Exp Ther; 2007 Apr; 321(1):213-20. PubMed ID: 17202401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regression of cardiac hypertrophy normalizes glucose metabolism and left ventricular function during reperfusion.
    Wambolt RB; Henning SL; English DR; Bondy GP; Allard MF
    J Mol Cell Cardiol; 1997 Mar; 29(3):939-48. PubMed ID: 9152855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts.
    el Alaoui-Talibi Z; Landormy S; Loireau A; Moravec J
    Am J Physiol; 1992 Apr; 262(4 Pt 2):H1068-74. PubMed ID: 1533101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of reducing fatty acid metabolism on mechanical function in regionally ischemic hearts.
    Liedtke AJ; Nellis SH; Mjøs OD
    Am J Physiol; 1984 Sep; 247(3 Pt 2):H387-94. PubMed ID: 6476133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts.
    Lopaschuk GD; Wambolt RB; Barr RL
    J Pharmacol Exp Ther; 1993 Jan; 264(1):135-44. PubMed ID: 8380856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel partial fatty acid oxidation inhibitor decreases myocardial oxygen consumption and improves cardiac efficiency in demand-induced ischemic heart.
    Wu L; Belardinelli L; Fraser H
    J Cardiovasc Pharmacol; 2008 Apr; 51(4):372-9. PubMed ID: 18427280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of 18F-fluoro-4-thia-palmitate as a PET probe for myocardial fatty acid oxidation: effects of hypoxia and composition of exogenous fatty acids.
    DeGrado TR; Kitapci MT; Wang S; Ying J; Lopaschuk GD
    J Nucl Med; 2006 Jan; 47(1):173-81. PubMed ID: 16391202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and metabolic characterization of ischemic contracture in the neonatal pig heart.
    Ascuitto RJ; Ross-Ascuitto NT; Kydon DW; Waddell AE; McDonough KH
    Pediatr Res; 1995 Aug; 38(2):228-36. PubMed ID: 7478821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial function and metabolism in pig hearts after relief from chronic partial coronary stenosis.
    Liedtke AJ; Renstrom B; Nellis SH; Subramanian R
    Am J Physiol; 1994 Oct; 267(4 Pt 2):H1312-9. PubMed ID: 7943376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.