These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 29122559)

  • 1. Constant hepatic ATP concentrations during prolonged fasting and absence of effects of Cerbomed Nemos
    Gancheva S; Bierwagen A; Markgraf DF; Bönhof GJ; Murphy KG; Hatziagelaki E; Lundbom J; Ziegler D; Roden M
    Mol Metab; 2018 Jan; 7():71-79. PubMed ID: 29122559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No modulation of postprandial metabolism by transcutaneous auricular vagus nerve stimulation: a cross-over study in 15 healthy men.
    Vosseler A; Zhao D; Fritsche L; Lehmann R; Kantartzis K; Small DM; Peter A; Häring HU; Birkenfeld AL; Fritsche A; Wagner R; Preißl H; Kullmann S; Heni M
    Sci Rep; 2020 Nov; 10(1):20466. PubMed ID: 33235256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ear your heart: transcutaneous auricular vagus nerve stimulation on heart rate variability in healthy young participants.
    Forte G; Favieri F; Leemhuis E; De Martino ML; Giannini AM; De Gennaro L; Casagrande M; Pazzaglia M
    PeerJ; 2022; 10():e14447. PubMed ID: 36438582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of transcutaneous auricular vagus nerve stimulation at left cymba concha on experimental pain as assessed with the nociceptive withdrawal reflex, and correlation with parasympathetic activity.
    Yokota H; Edama M; Kawanabe Y; Hirabayashi R; Sekikne C; Akuzawa H; Ishigaki T; Otsuru N; Saito K; Kojima S; Miyaguchi S; Onishi H
    Eur J Neurosci; 2024 May; 59(10):2826-2835. PubMed ID: 38469939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuro-cardiac coupling predicts transcutaneous auricular vagus nerve stimulation effects.
    Keute M; Machetanz K; Berelidze L; Guggenberger R; Gharabaghi A
    Brain Stimul; 2021; 14(2):209-216. PubMed ID: 33422683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the cholinergic antiinflammatory reflex by occipitoatlantal decompression and transcutaneous auricular vagus nerve stimulation.
    Kania AM; Weiler KN; Kurian AP; Opena ML; Orellana JN; Stauss HM
    J Osteopath Med; 2021 Feb; 121(4):401-415. PubMed ID: 33694358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of transcutaneous auricular vagus nerve stimulation on hyperglycemia and insulin receptors expression in impaired glucose tolerance rats].
    Zhang Y; Li SY; Wang JY; Zhai X; Zhang ZX; Rong PJ
    Zhen Ci Yan Jiu; 2020 Nov; 45(11):882-7. PubMed ID: 33269831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcutaneous auricular vagus nerve stimulation and heart rate variability: Analysis of parameters and targets.
    Machetanz K; Berelidze L; Guggenberger R; Gharabaghi A
    Auton Neurosci; 2021 Dec; 236():102894. PubMed ID: 34662844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of transcutaneous auricular vagus nerve stimulation on autonomic nervous function in rats with functional dyspepsia].
    Hou LW; Rong PJ; Li L; Wei W; Fang JL; Zhang JL; Wang JY
    Zhen Ci Yan Jiu; 2021 Aug; 46(8):663-70. PubMed ID: 34472751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occipitoatlantal decompression and noninvasive vagus nerve stimulation slow conduction velocity through the atrioventricular node in healthy participants.
    Dalgleish AS; Kania AM; Stauss HM; Jelen AZ
    J Osteopath Med; 2021 Feb; 121(4):349-359. PubMed ID: 33694346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reassessment of the Effect of Transcutaneous Auricular Vagus Nerve Stimulation Using a Novel Burst Paradigm on Cardiac Autonomic Function in Healthy Young Adults.
    Shen LL; Sun JB; Yang XJ; Deng H; Qin W; Du MY; Meng LX; Li N; Guo XY; Qiao WZ; Yang WQ; Liu P; Zeng X
    Neuromodulation; 2022 Apr; 25(3):433-442. PubMed ID: 35396073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variants in Genes Controlling Oxidative Metabolism Contribute to Lower Hepatic ATP Independent of Liver Fat Content in Type 1 Diabetes.
    Gancheva S; Bierwagen A; Kaul K; Herder C; Nowotny P; Kahl S; Giani G; Klueppelholz B; Knebel B; Begovatz P; Strassburger K; Al-Hasani H; Lundbom J; Szendroedi J; Roden M;
    Diabetes; 2016 Jul; 65(7):1849-57. PubMed ID: 27207512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A framework for the interpretation of heart rate variability applied to transcutaneous auricular vagus nerve stimulation and osteopathic manipulation.
    Kania A; Roufail J; Prokop J; Stauss HM
    Physiol Rep; 2024 Mar; 12(6):e15981. PubMed ID: 38508860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanism of melatonin-mediated antihyperglycemic effect of transcutaneous auricular vagus nerve stimulation].
    Zhang YZ; Xin C; Zhang ZX; Zhang KQ; Li L; Rong PJ; Li SY
    Zhen Ci Yan Jiu; 2023 Aug; 48(8):812-7. PubMed ID: 37614140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: A nonrandomized controlled pilot study.
    Rong P; Liu J; Wang L; Liu R; Fang J; Zhao J; Zhao Y; Wang H; Vangel M; Sun S; Ben H; Park J; Li S; Meng H; Zhu B; Kong J
    J Affect Disord; 2016 May; 195():172-9. PubMed ID: 26896810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive stimulation of vagal afferents reduces gastric frequency.
    Teckentrup V; Neubert S; Santiago JCP; Hallschmid M; Walter M; Kroemer NB
    Brain Stimul; 2020; 13(2):470-473. PubMed ID: 31884186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review.
    Badran BW; Dowdle LT; Mithoefer OJ; LaBate NT; Coatsworth J; Brown JC; DeVries WH; Austelle CW; McTeague LM; George MS
    Brain Stimul; 2018; 11(3):492-500. PubMed ID: 29361441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Effects of Non-Invasive Transauricular Vagus Nerve Stimulation On EEG and HRV.
    Gianlorenco AC; Pacheco-Barrios K; Camargo L; Pichardo E; Choi H; Song JJ; Fregni F
    J Vis Exp; 2024 Jan; (203):. PubMed ID: 38314847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin.
    Kozorosky EM; Lee CH; Lee JG; Nunez Martinez V; Padayachee LE; Stauss HM
    Physiol Rep; 2022 Apr; 10(8):e15253. PubMed ID: 35441808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study.
    Huang F; Dong J; Kong J; Wang H; Meng H; Spaeth RB; Camhi S; Liao X; Li X; Zhai X; Li S; Zhu B; Rong P
    BMC Complement Altern Med; 2014 Jun; 14():203. PubMed ID: 24968966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.