BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29122703)

  • 1. Improving metabolic efficiency of the reverse beta-oxidation cycle by balancing redox cofactor requirement.
    Wu J; Zhang X; Zhou P; Huang J; Xia X; Li W; Zhou Z; Chen Y; Liu Y; Dong M
    Metab Eng; 2017 Nov; 44():313-324. PubMed ID: 29122703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of artificial micro-aerobic metabolism for energy- and carbon-efficient synthesis of medium chain fatty acids in Escherichia coli.
    Wu J; Wang Z; Duan X; Zhou P; Liu P; Pang Z; Wang Y; Wang X; Li W; Dong M
    Metab Eng; 2019 May; 53():1-13. PubMed ID: 30684584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.
    van Rossum HM; Kozak BU; Pronk JT; van Maris AJA
    Metab Eng; 2016 Jul; 36():99-115. PubMed ID: 27016336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli.
    Wu J; Zhang X; Xia X; Dong M
    Metab Eng; 2017 May; 41():115-124. PubMed ID: 28392294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping.
    Xu JZ; Ruan HZ; Chen XL; Zhang F; Zhang W
    Microb Cell Fact; 2019 Apr; 18(1):65. PubMed ID: 30943966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico assessment of the metabolic capabilities of an engineered functional reversal of the β-oxidation cycle for the synthesis of longer-chain (C≥4) products.
    Cintolesi A; Clomburg JM; Gonzalez R
    Metab Eng; 2014 May; 23():100-15. PubMed ID: 24569100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids.
    Kim S; Cheong S; Gonzalez R
    Metab Eng; 2016 Jul; 36():90-98. PubMed ID: 26996381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli.
    Zhou L; Zhu Y; Yuan Z; Liu G; Sun Z; Du S; Liu H; Li Y; Liu H; Zhou Z
    Appl Environ Microbiol; 2022 Sep; 88(17):e0097622. PubMed ID: 35980178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli.
    Zhang S; Yang W; Chen H; Liu B; Lin B; Tao Y
    Microb Cell Fact; 2019 Aug; 18(1):130. PubMed ID: 31387584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis.
    Gu Y; Lv X; Liu Y; Li J; Du G; Chen J; Rodrigo LA; Liu L
    Metab Eng; 2019 Jan; 51():59-69. PubMed ID: 30343048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common aspects in the engineering of yeasts for fatty acid- and isoprene-based products.
    Arhar S; Natter K
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Dec; 1864(12):158513. PubMed ID: 31465888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Redox Cofactor Balance for Improved 5-Methyltetrahydrofolate Production in
    Yang J; Wu Y; Lv X; Liu L; Li J; Du G; Liu Y
    J Agric Food Chem; 2024 May; 72(17):9974-9983. PubMed ID: 38625685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae.
    Hou J; Lages NF; Oldiges M; Vemuri GN
    Metab Eng; 2009; 11(4-5):253-61. PubMed ID: 19446033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing n-butanol production with
    Schadeweg V; Boles E
    Biotechnol Biofuels; 2016; 9():257. PubMed ID: 27924150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica.
    Liu H; Marsafari M; Wang F; Deng L; Xu P
    Metab Eng; 2019 Dec; 56():60-68. PubMed ID: 31470116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.
    Liu J; Li H; Zhao G; Caiyin Q; Qiao J
    J Ind Microbiol Biotechnol; 2018 May; 45(5):313-327. PubMed ID: 29582241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli.
    Vadali RV; Bennett GN; San KY
    Metab Eng; 2004 Apr; 6(2):133-9. PubMed ID: 15113566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of type II fatty acid biosynthesis enzymes and thiolases supports a functional β-oxidation reversal.
    Clomburg JM; Contreras SC; Chou A; Siegel JB; Gonzalez R
    Metab Eng; 2018 Jan; 45():11-19. PubMed ID: 29146470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.