BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29122703)

  • 21. Combining Protein and Metabolic Engineering Strategies for High-Level Production of O-Acetylhomoserine in Escherichia coli.
    Wei L; Wang Q; Xu N; Cheng J; Zhou W; Han G; Jiang H; Liu J; Ma Y
    ACS Synth Biol; 2019 May; 8(5):1153-1167. PubMed ID: 30973696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cofactor engineering for advancing chemical biotechnology.
    Wang Y; San KY; Bennett GN
    Curr Opin Biotechnol; 2013 Dec; 24(6):994-9. PubMed ID: 23611567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic Impact of Redox Cofactor Perturbations on the Formation of Aroma Compounds in Saccharomyces cerevisiae.
    Bloem A; Sanchez I; Dequin S; Camarasa C
    Appl Environ Microbiol; 2016 Jan; 82(1):174-83. PubMed ID: 26475113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):230-7. PubMed ID: 12616692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae.
    Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA
    Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced β-Amyrin Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA Supply Pathway.
    Liu H; Fan J; Wang C; Li C; Zhou X
    J Agric Food Chem; 2019 Apr; 67(13):3723-3732. PubMed ID: 30808164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering the acetyl-CoA transportation system of candida tropicalis enhances the production of dicarboxylic acid.
    Cao Z; Gao H; Liu M; Jiao P
    Biotechnol J; 2006 Jan; 1(1):68-74. PubMed ID: 16892226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of Saccharomyces cerevisiae through Lipoylation Machinery Engineering.
    Lian J; Zhao H
    ACS Synth Biol; 2016 Jul; 5(7):689-97. PubMed ID: 26991359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle.
    Clomburg JM; Vick JE; Blankschien MD; Rodríguez-Moyá M; Gonzalez R
    ACS Synth Biol; 2012 Nov; 1(11):541-54. PubMed ID: 23656231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum.
    Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG
    J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA.
    Schadeweg V; Boles E
    Biotechnol Biofuels; 2016; 9():44. PubMed ID: 26913077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis.
    Liu C; Ding Y; Xian M; Liu M; Liu H; Ma Q; Zhao G
    Crit Rev Biotechnol; 2017 Nov; 37(7):933-941. PubMed ID: 28078904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
    Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS
    Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering redox homeostasis to develop efficient alcohol-producing microbial cell factories.
    Zhao C; Zhao Q; Li Y; Zhang Y
    Microb Cell Fact; 2017 Jun; 16(1):115. PubMed ID: 28646866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth-coupled enzyme engineering through manipulation of redox cofactor regeneration.
    Nielsen JR; Weusthuis RA; Huang WE
    Biotechnol Adv; 2023; 63():108102. PubMed ID: 36681133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains.
    Lian J; Si T; Nair NU; Zhao H
    Metab Eng; 2014 Jul; 24():139-49. PubMed ID: 24853351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving methyl ketone production in Escherichia coli by heterologous expression of NADH-dependent FabG.
    Goh EB; Chen Y; Petzold CJ; Keasling JD; Beller HR
    Biotechnol Bioeng; 2018 May; 115(5):1161-1172. PubMed ID: 29411856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae.
    Zhang Q; Zeng W; Xu S; Zhou J
    Bioresour Technol; 2021 Dec; 342():125978. PubMed ID: 34598073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering a Novel Acetyl-CoA Pathway for Efficient Biosynthesis of Acetyl-CoA-Derived Compounds.
    Nie M; Wang J; Zhang K
    ACS Synth Biol; 2024 Jan; 13(1):358-369. PubMed ID: 38151239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors.
    Deng C; Lv X; Li J; Zhang H; Liu Y; Du G; Amaro RL; Liu L
    Metab Eng; 2021 Sep; 67():330-346. PubMed ID: 34329707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.