These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 29122868)
1. Genome Sequence of Zapparata A; Da Lio D; Somma S; Vicente Muñoz I; Malfatti L; Vannacci G; Moretti A; Baroncelli R; Sarrocco S Genome Announc; 2017 Nov; 5(45):. PubMed ID: 29122868 [No Abstract] [Full Text] [Related]
2. A novel Bacillus sp. with antagonistic activity against a plant pathogen, Fusarium graminearum, and its potential antagonistic mechanism. Shen S; Yu F; Hao X; Chen J; Gao H; Lai X Lett Appl Microbiol; 2023 Sep; 76(9):. PubMed ID: 37656884 [TBL] [Abstract][Full Text] [Related]
3. Isobaric tags for relative and absolute quantification-based proteomic analysis of defense responses triggered by the fungal pathogen Fusarium graminearum in wheat. Wang B; Li X; Chen W; Kong L J Proteomics; 2019 Sep; 207():103442. PubMed ID: 31326557 [TBL] [Abstract][Full Text] [Related]
4. Cell wall traits as potential resources to improve resistance of durum wheat against Fusarium graminearum. Lionetti V; Giancaspro A; Fabri E; Giove SL; Reem N; Zabotina OA; Blanco A; Gadaleta A; Bellincampi D BMC Plant Biol; 2015 Jan; 15():6. PubMed ID: 25597920 [TBL] [Abstract][Full Text] [Related]
5. Regional and field-specific differences in Fusarium species and mycotoxins associated with blighted North Carolina wheat. Cowger C; Ward TJ; Nilsson K; Arellano C; McCormick SP; Busman M Int J Food Microbiol; 2020 Jun; 323():108594. PubMed ID: 32229393 [TBL] [Abstract][Full Text] [Related]
6. Identification of putative phosphoproteins in wheat spikes induced by Fusarium graminearum. Ding L; Yang R; Yang G; Cao J; Li P; Zhou Y Planta; 2016 Mar; 243(3):719-31. PubMed ID: 26669597 [TBL] [Abstract][Full Text] [Related]
7. Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Matarese F; Sarrocco S; Gruber S; Seidl-Seiboth V; Vannacci G Microbiology (Reading); 2012 Jan; 158(Pt 1):98-106. PubMed ID: 21980117 [TBL] [Abstract][Full Text] [Related]
9. Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum. Mogg C; Bonner C; Wang L; Schernthaner J; Smith M; Desveaux D; Subramaniam R mBio; 2019 Jun; 10(3):. PubMed ID: 31186319 [TBL] [Abstract][Full Text] [Related]
11. Regional differences in the composition of Fusarium Head Blight pathogens and mycotoxins associated with wheat in Mexico. Cerón-Bustamante M; Ward TJ; Kelly A; Vaughan MM; McCormick SP; Cowger C; Leyva-Mir SG; Villaseñor-Mir HE; Ayala-Escobar V; Nava-Díaz C Int J Food Microbiol; 2018 May; 273():11-19. PubMed ID: 29554557 [TBL] [Abstract][Full Text] [Related]
12. Effects of Fusarium graminearum and Fusarium poae on disease parameters, grain quality and mycotoxins contamination in bread wheat (Part I). Martínez M; Ramírez Albuquerque L; Arata AF; Biganzoli F; Fernández Pinto V; Stenglein SA J Sci Food Agric; 2020 Jan; 100(2):863-873. PubMed ID: 31646638 [TBL] [Abstract][Full Text] [Related]
13. Fusarium Head Blight in Durum Wheat: Recent Status, Breeding Directions, and Future Research Prospects. Haile JK; N'Diaye A; Walkowiak S; Nilsen KT; Clarke JM; Kutcher HR; Steiner B; Buerstmayr H; Pozniak CJ Phytopathology; 2019 Oct; 109(10):1664-1675. PubMed ID: 31369363 [TBL] [Abstract][Full Text] [Related]
14. Development of a PCR-RFLP method based on the transcription elongation factor 1-α gene to differentiate Fusarium graminearum from other species within the Fusarium graminearum species complex. Garmendia G; Umpierrez-Failache M; Ward TJ; Vero S Food Microbiol; 2018 Apr; 70():28-32. PubMed ID: 29173636 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomics of cereal-Fusarium graminearum interactions: what we have learned so far. Kazan K; Gardiner DM Mol Plant Pathol; 2018 Mar; 19(3):764-778. PubMed ID: 28411402 [TBL] [Abstract][Full Text] [Related]
16. Within-field variation of Fusarium graminearum isolates for aggressiveness and deoxynivalenol production in wheat head blight. Talas F; Kalih R; Miedaner T Phytopathology; 2012 Jan; 102(1):128-34. PubMed ID: 22165985 [TBL] [Abstract][Full Text] [Related]
17. Fusarium graminearum Chemotype-Spring Wheat Genotype Interaction Effects in Type I and II Resistance Response Assays. Serajazari M; Hudson K; Kaviani M; Navabi A Phytopathology; 2019 Apr; 109(4):643-649. PubMed ID: 30451634 [TBL] [Abstract][Full Text] [Related]
18. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance. Li J; Duan Y; Bian C; Pan X; Yao C; Wang J; Zhou M Pestic Biochem Physiol; 2019 Jan; 153():152-160. PubMed ID: 30744889 [TBL] [Abstract][Full Text] [Related]
19. Causal agents of Fusarium head blight of durum wheat (Triticum durum Desf.) in central Italy and their in vitro biosynthesis of secondary metabolites. Beccari G; Colasante V; Tini F; Senatore MT; Prodi A; Sulyok M; Covarelli L Food Microbiol; 2018 Apr; 70():17-27. PubMed ID: 29173624 [TBL] [Abstract][Full Text] [Related]
20. Intrapopulation Antagonism Can Reduce the Growth and Aggressiveness of the Wheat Head Blight Pathogen Vaughan MM; Ward TJ; McCormick SP; Orwig N; Hay WT; Proctor R; Palmquist D Phytopathology; 2020 Apr; 110(4):916-926. PubMed ID: 32125942 [No Abstract] [Full Text] [Related] [Next] [New Search]