These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 29122955)

  • 1. DNPEP is not the only peptidase that produces SPAK fragments in kidney.
    Koumangoye R; Delpire E
    Physiol Rep; 2017 Nov; 5(21):. PubMed ID: 29122955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STE20/SPS1-related proline/alanine-rich kinase (SPAK) is critical for sodium reabsorption in isolated, perfused thick ascending limb.
    Cheng CJ; Yoon J; Baum M; Huang CL
    Am J Physiol Renal Physiol; 2015 Mar; 308(5):F437-43. PubMed ID: 25477470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short forms of Ste20-related proline/alanine-rich kinase (SPAK) in the kidney are created by aspartyl aminopeptidase (Dnpep)-mediated proteolytic cleavage.
    Markadieu N; Rios K; Spiller BW; McDonald WH; Welling PA; Delpire E
    J Biol Chem; 2014 Oct; 289(42):29273-84. PubMed ID: 25164821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule.
    Ferdaus MZ; Barber KW; López-Cayuqueo KI; Terker AS; Argaiz ER; Gassaway BM; Chambrey R; Gamba G; Rinehart J; McCormick JA
    J Physiol; 2016 Sep; 594(17):4945-66. PubMed ID: 27068441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia.
    Thomson MN; Cuevas CA; Bewarder TM; Dittmayer C; Miller LN; Si J; Cornelius RJ; Su XT; Yang CL; McCormick JA; Hadchouel J; Ellison DH; Bachmann S; Mutig K
    Am J Physiol Renal Physiol; 2020 Jan; 318(1):F216-F228. PubMed ID: 31736353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-terminally truncated, kidney-specific variants of the WNK4 kinase lack several sites that regulate its activity.
    Murillo-de-Ozores AR; Rodríguez-Gama A; Bazúa-Valenti S; Leyva-Ríos K; Vázquez N; Pacheco-Álvarez D; De La Rosa-Velázquez IA; Wengi A; Stone KL; Zhang J; Loffing J; Lifton RP; Yang CL; Ellison DH; Gamba G; Castañeda-Bueno M
    J Biol Chem; 2018 Aug; 293(31):12209-12221. PubMed ID: 29921588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel mechanisms of Na+ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK.
    Davies M; Fraser SA; Galic S; Choy SW; Katerelos M; Gleich K; Kemp BE; Mount PF; Power DA
    Am J Physiol Renal Physiol; 2014 Jul; 307(1):F96-F106. PubMed ID: 24808538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride channel ClC-5 binds to aspartyl aminopeptidase to regulate renal albumin endocytosis.
    Lee A; Slattery C; Nikolic-Paterson DJ; Hryciw DH; Wilk S; Wilk E; Zhang Y; Valova VA; Robinson PJ; Kelly DJ; Poronnik P
    Am J Physiol Renal Physiol; 2015 Apr; 308(7):F784-92. PubMed ID: 25587118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic Metabolic Acidosis Activates Renal Tubular Sodium Chloride Cotransporter through Angiotension II-dependent WNK4-SPAK Phosphorylation Pathway.
    Fang YW; Yang SS; Cheng CJ; Tseng MH; Hsu HM; Lin SH
    Sci Rep; 2016 Jan; 6():18360. PubMed ID: 26728390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Novel SPAK Inhibitors That Block WNK Kinase Signaling to Cation Chloride Transporters.
    Kikuchi E; Mori T; Zeniya M; Isobe K; Ishigami-Yuasa M; Fujii S; Kagechika H; Ishihara T; Mizushima T; Sasaki S; Sohara E; Rai T; Uchida S
    J Am Soc Nephrol; 2015 Jul; 26(7):1525-36. PubMed ID: 25377078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular K
    Penton D; Czogalla J; Wengi A; Himmerkus N; Loffing-Cueni D; Carrel M; Rajaram RD; Staub O; Bleich M; Schweda F; Loffing J
    J Physiol; 2016 Nov; 594(21):6319-6331. PubMed ID: 27457700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary salt intake regulates WNK3-SPAK-NKCC1 phosphorylation cascade in mouse aorta through angiotensin II.
    Zeniya M; Sohara E; Kita S; Iwamoto T; Susa K; Mori T; Oi K; Chiga M; Takahashi D; Yang SS; Lin SH; Rai T; Sasaki S; Uchida S
    Hypertension; 2013 Nov; 62(5):872-8. PubMed ID: 24019400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A PAK5-DNPEP-USP4 axis dictates breast cancer growth and metastasis.
    Geng N; Li Y; Zhang W; Wang F; Wang X; Jin Z; Xing Y; Li D; Zhang H; Li Y; Li X; Cheng M; Jin F; Li F
    Int J Cancer; 2020 Feb; 146(4):1139-1151. PubMed ID: 31219614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPAK, a STE20/SPS1-related kinase that activates the p38 pathway.
    Johnston AM; Naselli G; Gonez LJ; Martin RM; Harrison LC; DeAizpurua HJ
    Oncogene; 2000 Aug; 19(37):4290-7. PubMed ID: 10980603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volume sensitivity of cation-Cl- cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4.
    Gagnon KB; England R; Delpire E
    Am J Physiol Cell Physiol; 2006 Jan; 290(1):C134-42. PubMed ID: 15930150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single binding motif is required for SPAK activation of the Na-K-2Cl cotransporter.
    Gagnon KB; England R; Delpire E
    Cell Physiol Biochem; 2007; 20(1-4):131-42. PubMed ID: 17595523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated genome editing.
    Roy A; Goodman JH; Begum G; Donnelly BF; Pittman G; Weinman EJ; Sun D; Subramanya AR
    Am J Physiol Renal Physiol; 2015 Feb; 308(4):F366-76. PubMed ID: 25477473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter.
    Gagnon KB; England R; Delpire E
    Mol Cell Biol; 2006 Jan; 26(2):689-98. PubMed ID: 16382158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OSR1 and SPAK cooperatively modulate Sertoli cell support of mouse spermatogenesis.
    Liu YL; Yang SS; Chen SJ; Lin YC; Chu CC; Huang HH; Chang FW; Yu MH; Lin SH; Wu GJ; Sytwu HK
    Sci Rep; 2016 Nov; 6():37205. PubMed ID: 27853306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of novel inhibitors of Mammalian aspartyl aminopeptidase.
    Chen Y; Tang H; Seibel W; Papoian R; Oh K; Li X; Zhang J; Golczak M; Palczewski K; Kiser PD
    Mol Pharmacol; 2014 Aug; 86(2):231-42. PubMed ID: 24913940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.