BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 29122955)

  • 1. DNPEP is not the only peptidase that produces SPAK fragments in kidney.
    Koumangoye R; Delpire E
    Physiol Rep; 2017 Nov; 5(21):. PubMed ID: 29122955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STE20/SPS1-related proline/alanine-rich kinase (SPAK) is critical for sodium reabsorption in isolated, perfused thick ascending limb.
    Cheng CJ; Yoon J; Baum M; Huang CL
    Am J Physiol Renal Physiol; 2015 Mar; 308(5):F437-43. PubMed ID: 25477470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short forms of Ste20-related proline/alanine-rich kinase (SPAK) in the kidney are created by aspartyl aminopeptidase (Dnpep)-mediated proteolytic cleavage.
    Markadieu N; Rios K; Spiller BW; McDonald WH; Welling PA; Delpire E
    J Biol Chem; 2014 Oct; 289(42):29273-84. PubMed ID: 25164821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule.
    Ferdaus MZ; Barber KW; López-Cayuqueo KI; Terker AS; Argaiz ER; Gassaway BM; Chambrey R; Gamba G; Rinehart J; McCormick JA
    J Physiol; 2016 Sep; 594(17):4945-66. PubMed ID: 27068441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia.
    Thomson MN; Cuevas CA; Bewarder TM; Dittmayer C; Miller LN; Si J; Cornelius RJ; Su XT; Yang CL; McCormick JA; Hadchouel J; Ellison DH; Bachmann S; Mutig K
    Am J Physiol Renal Physiol; 2020 Jan; 318(1):F216-F228. PubMed ID: 31736353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-terminally truncated, kidney-specific variants of the WNK4 kinase lack several sites that regulate its activity.
    Murillo-de-Ozores AR; Rodríguez-Gama A; Bazúa-Valenti S; Leyva-Ríos K; Vázquez N; Pacheco-Álvarez D; De La Rosa-Velázquez IA; Wengi A; Stone KL; Zhang J; Loffing J; Lifton RP; Yang CL; Ellison DH; Gamba G; Castañeda-Bueno M
    J Biol Chem; 2018 Aug; 293(31):12209-12221. PubMed ID: 29921588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel mechanisms of Na+ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK.
    Davies M; Fraser SA; Galic S; Choy SW; Katerelos M; Gleich K; Kemp BE; Mount PF; Power DA
    Am J Physiol Renal Physiol; 2014 Jul; 307(1):F96-F106. PubMed ID: 24808538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride channel ClC-5 binds to aspartyl aminopeptidase to regulate renal albumin endocytosis.
    Lee A; Slattery C; Nikolic-Paterson DJ; Hryciw DH; Wilk S; Wilk E; Zhang Y; Valova VA; Robinson PJ; Kelly DJ; Poronnik P
    Am J Physiol Renal Physiol; 2015 Apr; 308(7):F784-92. PubMed ID: 25587118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic Metabolic Acidosis Activates Renal Tubular Sodium Chloride Cotransporter through Angiotension II-dependent WNK4-SPAK Phosphorylation Pathway.
    Fang YW; Yang SS; Cheng CJ; Tseng MH; Hsu HM; Lin SH
    Sci Rep; 2016 Jan; 6():18360. PubMed ID: 26728390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Novel SPAK Inhibitors That Block WNK Kinase Signaling to Cation Chloride Transporters.
    Kikuchi E; Mori T; Zeniya M; Isobe K; Ishigami-Yuasa M; Fujii S; Kagechika H; Ishihara T; Mizushima T; Sasaki S; Sohara E; Rai T; Uchida S
    J Am Soc Nephrol; 2015 Jul; 26(7):1525-36. PubMed ID: 25377078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular K
    Penton D; Czogalla J; Wengi A; Himmerkus N; Loffing-Cueni D; Carrel M; Rajaram RD; Staub O; Bleich M; Schweda F; Loffing J
    J Physiol; 2016 Nov; 594(21):6319-6331. PubMed ID: 27457700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary salt intake regulates WNK3-SPAK-NKCC1 phosphorylation cascade in mouse aorta through angiotensin II.
    Zeniya M; Sohara E; Kita S; Iwamoto T; Susa K; Mori T; Oi K; Chiga M; Takahashi D; Yang SS; Lin SH; Rai T; Sasaki S; Uchida S
    Hypertension; 2013 Nov; 62(5):872-8. PubMed ID: 24019400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A PAK5-DNPEP-USP4 axis dictates breast cancer growth and metastasis.
    Geng N; Li Y; Zhang W; Wang F; Wang X; Jin Z; Xing Y; Li D; Zhang H; Li Y; Li X; Cheng M; Jin F; Li F
    Int J Cancer; 2020 Feb; 146(4):1139-1151. PubMed ID: 31219614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPAK, a STE20/SPS1-related kinase that activates the p38 pathway.
    Johnston AM; Naselli G; Gonez LJ; Martin RM; Harrison LC; DeAizpurua HJ
    Oncogene; 2000 Aug; 19(37):4290-7. PubMed ID: 10980603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volume sensitivity of cation-Cl- cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4.
    Gagnon KB; England R; Delpire E
    Am J Physiol Cell Physiol; 2006 Jan; 290(1):C134-42. PubMed ID: 15930150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single binding motif is required for SPAK activation of the Na-K-2Cl cotransporter.
    Gagnon KB; England R; Delpire E
    Cell Physiol Biochem; 2007; 20(1-4):131-42. PubMed ID: 17595523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated genome editing.
    Roy A; Goodman JH; Begum G; Donnelly BF; Pittman G; Weinman EJ; Sun D; Subramanya AR
    Am J Physiol Renal Physiol; 2015 Feb; 308(4):F366-76. PubMed ID: 25477473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter.
    Gagnon KB; England R; Delpire E
    Mol Cell Biol; 2006 Jan; 26(2):689-98. PubMed ID: 16382158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OSR1 and SPAK cooperatively modulate Sertoli cell support of mouse spermatogenesis.
    Liu YL; Yang SS; Chen SJ; Lin YC; Chu CC; Huang HH; Chang FW; Yu MH; Lin SH; Wu GJ; Sytwu HK
    Sci Rep; 2016 Nov; 6():37205. PubMed ID: 27853306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of novel inhibitors of Mammalian aspartyl aminopeptidase.
    Chen Y; Tang H; Seibel W; Papoian R; Oh K; Li X; Zhang J; Golczak M; Palczewski K; Kiser PD
    Mol Pharmacol; 2014 Aug; 86(2):231-42. PubMed ID: 24913940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.