BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 29122984)

  • 1. Effects of mutating α-tubulin lysine 40 on sensory dendrite development.
    Jenkins BV; Saunders HAJ; Record HL; Johnson-Schlitz DM; Wildonger J
    J Cell Sci; 2017 Dec; 130(24):4120-4131. PubMed ID: 29122984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation.
    Shida T; Cueva JG; Xu Z; Goodman MB; Nachury MV
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21517-22. PubMed ID: 21068373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules.
    Soppina V; Herbstman JF; Skiniotis G; Verhey KJ
    PLoS One; 2012; 7(10):e48204. PubMed ID: 23110214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule Acetylation Is Required for Mechanosensation in Drosophila.
    Yan C; Wang F; Peng Y; Williams CR; Jenkins B; Wildonger J; Kim HJ; Perr JB; Vaughan JC; Kern ME; Falvo MR; O'Brien ET; Superfine R; Tuthill JC; Xiang Y; Rogers SL; Parrish JZ
    Cell Rep; 2018 Oct; 25(4):1051-1065.e6. PubMed ID: 30355484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of β-Tubulin by the Down Syndrome Kinase, Minibrain/DYRK1a, Regulates Microtubule Dynamics and Dendrite Morphogenesis.
    Ori-McKenney KM; McKenney RJ; Huang HH; Li T; Meltzer S; Jan LY; Vale RD; Wiita AP; Jan YN
    Neuron; 2016 May; 90(3):551-63. PubMed ID: 27112495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α-TubK40me3 is required for neuronal polarization and migration by promoting microtubule formation.
    Xie X; Wang S; Li M; Diao L; Pan X; Chen J; Zou W; Zhang X; Feng W; Bao L
    Nat Commun; 2021 Jul; 12(1):4113. PubMed ID: 34226540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α-Tubulin acetylation at lysine 40 regulates dendritic arborization and larval locomotion by promoting microtubule stability in Drosophila.
    Niu X; Mao CX; Wang S; Wang X; Zhang Y; Hu J; Bi R; Liu Z; Shan J
    PLoS One; 2023; 18(2):e0280573. PubMed ID: 36827311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single amino-acid substitution at lysine 40 of an Arabidopsis thalianaα-tubulin causes extensive cell proliferation and expansion defects.
    Xiong X; Xu D; Yang Z; Huang H; Cui X
    J Integr Plant Biol; 2013 Mar; 55(3):209-20. PubMed ID: 23134282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential modification of the C-terminal tails of different α-tubulins and their importance for microtubule function in vivo.
    Bao M; Dörig RE; Vazquez-Pianzola PM; Beuchle D; Suter B
    Elife; 2023 Jun; 12():. PubMed ID: 37345829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking cell surface receptors to microtubules: tubulin folding cofactor D mediates Dscam functions during neuronal morphogenesis.
    Okumura M; Sakuma C; Miura M; Chihara T
    J Neurosci; 2015 Feb; 35(5):1979-90. PubMed ID: 25653356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubule regulation: Transcending the tenet of K40 acetylation.
    Prokop A
    Curr Biol; 2022 Feb; 32(3):R126-R128. PubMed ID: 35134360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The growing landscape of tubulin acetylation: lysine 40 and many more.
    Sadoul K; Khochbin S
    Biochem J; 2016 Jul; 473(13):1859-68. PubMed ID: 27354562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila CG17003/leaky (lky) is required for microtubule acetylation in early germ cells in Drosophila ovary.
    Antel M; Simao T; Bener MB; Inaba M
    PLoS One; 2022; 17(11):e0276704. PubMed ID: 36342916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alpha-Tubulin Acetylation in
    Alonso VL; Carloni ME; Gonçalves CS; Martinez Peralta G; Chesta ME; Pezza A; Tavernelli LE; Motta MCM; Serra E
    Front Cell Infect Microbiol; 2021; 11():642271. PubMed ID: 33777851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. αTAT1 controls longitudinal spreading of acetylation marks from open microtubules extremities.
    Ly N; Elkhatib N; Bresteau E; Piétrement O; Khaled M; Magiera MM; Janke C; Le Cam E; Rutenberg AD; Montagnac G
    Sci Rep; 2016 Oct; 6():35624. PubMed ID: 27752143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Causes and Consequences of Microtubule Acetylation.
    Janke C; Montagnac G
    Curr Biol; 2017 Dec; 27(23):R1287-R1292. PubMed ID: 29207274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule polyglutamylation and acetylation drive microtubule dynamics critical for platelet formation.
    van Dijk J; Bompard G; Cau J; Kunishima S; Rabeharivelo G; Mateos-Langerak J; Cazevieille C; Cavelier P; Boizet-Bonhoure B; Delsert C; Morin N
    BMC Biol; 2018 Oct; 16(1):116. PubMed ID: 30336771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial regulation of microtubule disruption during dendrite pruning in
    Herzmann S; Götzelmann I; Reekers LF; Rumpf S
    Development; 2018 May; 145(9):. PubMed ID: 29712642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of α-tubulin acetylation on microtubule structure and stability.
    Eshun-Wilson L; Zhang R; Portran D; Nachury MV; Toso DB; Löhr T; Vendruscolo M; Bonomi M; Fraser JS; Nogales E
    Proc Natl Acad Sci U S A; 2019 May; 116(21):10366-10371. PubMed ID: 31072936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylated α-tubulin K394 regulates microtubule stability to shape the growth of axon terminals.
    Saunders HAJ; Johnson-Schlitz DM; Jenkins BV; Volkert PJ; Yang SZ; Wildonger J
    Curr Biol; 2022 Feb; 32(3):614-630.e5. PubMed ID: 35081332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.