These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29123020)

  • 1. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing.
    Rao F; Ding K; Zhou Y; Zheng Y; Xia M; Lv S; Song Z; Feng S; Ronneberger I; Mazzarello R; Zhang W; Ma E
    Science; 2017 Dec; 358(6369):1423-1427. PubMed ID: 29123020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breaking the speed limits of phase-change memory.
    Loke D; Lee TH; Wang WJ; Shi LP; Zhao R; Yeo YC; Chong TC; Elliott SR
    Science; 2012 Jun; 336(6088):1566-9. PubMed ID: 22723419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scandium doping brings speed improvement in Sb
    Chen X; Zheng Y; Zhu M; Ren K; Wang Y; Li T; Liu G; Guo T; Wu L; Liu X; Cheng Y; Song Z
    Sci Rep; 2018 May; 8(1):6839. PubMed ID: 29717216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse Resistance Change Cr
    Hatayama S; Sutou Y; Shindo S; Saito Y; Song YH; Ando D; Koike J
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2725-2734. PubMed ID: 29280374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shortening Nucleation Time to Enable Ultrafast Phase Transition in Zn
    Wang G; Lotnyk A; Nie Q; Wang R; Shen X; Lu Y
    Langmuir; 2018 Dec; 34(50):15143-15149. PubMed ID: 30449104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring the Structural and Optical Properties of Germanium Telluride Phase-Change Materials by Indium Incorporation.
    Wang X; Shen X; Sun S; Zhang W
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal-Like Glassy Structure in Sc-Doped BiSbTe Ensuring Excellent Speed and Power Efficiency in Phase Change Memory.
    Ren K; Xia M; Zhu S; Wang G; Xin T; Lv S; Song Z
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16601-16608. PubMed ID: 32174106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale Chemical Heterogeneity Ensures Unprecedently Low Resistance Drift in Cache-Type Phase-Change Memory Materials.
    Huang J; Chen B; Sha G; Gong H; Song T; Ding K; Rao F
    Nano Lett; 2023 Mar; 23(6):2362-2369. PubMed ID: 36861962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ta-Doped Sb
    Xue Y; Yan S; Lv S; Song S; Song Z
    Nanomicro Lett; 2021 Jan; 13(1):33. PubMed ID: 34138214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Electrode Material on the Crystallization of GeTe Grown by Atomic Layer Deposition for Phase Change Random Access Memory.
    Oh SI; Im IH; Yoo C; Ryu SY; Kim Y; Choi S; Eom T; Hwang CS; Choi BJ
    Micromachines (Basel); 2019 Apr; 10(5):. PubMed ID: 31035543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic observation of phase transformation behaviors in indium(III) selenide nanowire based phase change memory.
    Huang YT; Huang CW; Chen JY; Ting YH; Lu KC; Chueh YL; Wu WW
    ACS Nano; 2014 Sep; 8(9):9457-62. PubMed ID: 25133955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rules of hierarchical melt and coordinate bond to design crystallization in doped phase change materials.
    Zhao J; Song WX; Xin T; Song Z
    Nat Commun; 2021 Nov; 12(1):6473. PubMed ID: 34753920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enabling universal memory by overcoming the contradictory speed and stability nature of phase-change materials.
    Wang W; Loke D; Shi L; Zhao R; Yang H; Law LT; Ng LT; Lim KG; Yeo YC; Chong TC; Lacaita AL
    Sci Rep; 2012; 2():360. PubMed ID: 22496956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Relationship between Electron Transport and Microstructure in Ge
    Liu C; Zheng Y; Xin T; Zheng Y; Wang R; Cheng Y
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution-phase deposition and nanopatterning of GeSbSe phase-change materials.
    Milliron DJ; Raoux S; Shelby RM; Jordan-Sweet J
    Nat Mater; 2007 May; 6(5):352-6. PubMed ID: 17417642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Priming effects in the crystallization of the phase change compound GeTe from atomistic simulations.
    Gabardi S; Sosso GG; Behler J; Bernasconi M
    Faraday Discuss; 2019 Feb; 213(0):287-301. PubMed ID: 30379974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppressing Structural Relaxation in Nanoscale Antimony to Enable Ultralow-Drift Phase-Change Memory Applications.
    Chen B; Wang XP; Jiao F; Ning L; Huang J; Xie J; Zhang S; Li XB; Rao F
    Adv Sci (Weinh); 2023 Sep; 10(25):e2301043. PubMed ID: 37377084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multistep crystal nucleation: a kinetic study based on colloidal crystallization.
    Zhang TH; Liu XY
    J Phys Chem B; 2007 Dec; 111(50):14001-5. PubMed ID: 18027919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One order of magnitude faster phase change at reduced power in Ti-Sb-Te.
    Zhu M; Xia M; Rao F; Li X; Wu L; Ji X; Lv S; Song Z; Feng S; Sun H; Zhang S
    Nat Commun; 2014 Jul; 5():4086. PubMed ID: 25001009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of titanium-centered octahedra in titanium-antimony-tellurium phase-change material.
    Rao F; Song Z; Cheng Y; Liu X; Xia M; Li W; Ding K; Feng X; Zhu M; Feng S
    Nat Commun; 2015 Nov; 6():10040. PubMed ID: 26610374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.