These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Identification of Wet-Spinning and Post-Spin Stretching Methods Amenable to Recombinant Spider Aciniform Silk. Weatherbee-Martin N; Xu L; Hupe A; Kreplak L; Fudge DS; Liu XQ; Rainey JK Biomacromolecules; 2016 Aug; 17(8):2737-46. PubMed ID: 27387592 [TBL] [Abstract][Full Text] [Related]
28. Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution. Xie F; Zhang H; Shao H; Hu X Int J Biol Macromol; 2006 May; 38(3-5):284-8. PubMed ID: 16678253 [TBL] [Abstract][Full Text] [Related]
29. Significantly reinforced composite fibers electrospun from silk fibroin/carbon nanotube aqueous solutions. Pan H; Zhang Y; Hang Y; Shao H; Hu X; Xu Y; Feng C Biomacromolecules; 2012 Sep; 13(9):2859-67. PubMed ID: 22881188 [TBL] [Abstract][Full Text] [Related]
30. Wet spinning of Bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibres. Marsano E; Corsini P; Arosio C; Boschi A; Mormino M; Freddi G Int J Biol Macromol; 2005 Dec; 37(4):179-88. PubMed ID: 16303174 [TBL] [Abstract][Full Text] [Related]
31. Biomimetic Spun Silk Ionotronic Fibers for Intelligent Discrimination of Motions and Tactile Stimuli. Cao X; Ye C; Cao L; Shan Y; Ren J; Ling S Adv Mater; 2023 Sep; 35(36):e2300447. PubMed ID: 37002548 [TBL] [Abstract][Full Text] [Related]
32. Linking naturally and unnaturally spun silks through the forced reeling of Bombyx mori. Mortimer B; Guan J; Holland C; Porter D; Vollrath F Acta Biomater; 2015 Jan; 11():247-55. PubMed ID: 25242653 [TBL] [Abstract][Full Text] [Related]
34. Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions. Zhang C; Zhang Y; Shao H; Hu X ACS Appl Mater Interfaces; 2016 Feb; 8(5):3349-58. PubMed ID: 26784289 [TBL] [Abstract][Full Text] [Related]
35. Spinning Regenerated Silk Fibers with Improved Toughness by Plasticizing with Low Molecular Weight Silk. Yao Y; Allardyce BJ; Rajkhowa R; Guo C; Mu X; Hegh D; Zhang J; Lynch P; Wang X; Kaplan DL; Razal JM Biomacromolecules; 2021 Feb; 22(2):788-799. PubMed ID: 33337131 [TBL] [Abstract][Full Text] [Related]
36. From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics. Wu R; Ma L; Liu XY Adv Sci (Weinh); 2022 Feb; 9(4):e2103981. PubMed ID: 34802200 [TBL] [Abstract][Full Text] [Related]
37. A Protein-Like Nanogel for Spinning Hierarchically Structured Artificial Spider Silk. He W; Qian D; Wang Y; Zhang G; Cheng Y; Hu X; Wen K; Wang M; Liu Z; Zhou X; Zhu M Adv Mater; 2022 Jul; 34(27):e2201843. PubMed ID: 35509216 [TBL] [Abstract][Full Text] [Related]
38. Tyrosine's Unique Role in the Hierarchical Assembly of Recombinant Spider Silk Proteins: From Spinning Dope to Fibers. Stengel D; Saric M; Johnson HR; Schiller T; Diehl J; Chalek K; Onofrei D; Scheibel T; Holland GP Biomacromolecules; 2023 Mar; 24(3):1463-1474. PubMed ID: 36791420 [TBL] [Abstract][Full Text] [Related]
39. Mechanically Strong Globular-Protein-Based Fibers Obtained Using a Microfluidic Spinning Technique. He H; Yang C; Wang F; Wei Z; Shen J; Chen D; Fan C; Zhang H; Liu K Angew Chem Int Ed Engl; 2020 Mar; 59(11):4344-4348. PubMed ID: 31873970 [TBL] [Abstract][Full Text] [Related]
40. A recombinant chimeric spider pyriform-aciniform silk with highly tunable mechanical performance. Ghimire A; Xu L; Liu XQ; Rainey JK Mater Today Bio; 2024 Jun; 26():101073. PubMed ID: 38711935 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]