These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29123126)

  • 21. Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability.
    Kusada K; Kobayashi H; Ikeda R; Kubota Y; Takata M; Toh S; Yamamoto T; Matsumura S; Sumi N; Sato K; Nagaoka K; Kitagawa H
    J Am Chem Soc; 2014 Feb; 136(5):1864-71. PubMed ID: 24455969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An in situ study of the hydriding kinetics of Pd thin films.
    Delmelle R; Proost J
    Phys Chem Chem Phys; 2011 Jun; 13(23):11412-21. PubMed ID: 21566834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles.
    Föttinger K; Rupprechter G
    Acc Chem Res; 2014 Oct; 47(10):3071-9. PubMed ID: 25247260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals.
    Bardhan R; Hedges LO; Pint CL; Javey A; Whitelam S; Urban JJ
    Nat Mater; 2013 Oct; 12(10):905-12. PubMed ID: 23913172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.
    Mori T; Sharma A; Hegmann T
    ACS Nano; 2016 Jan; 10(1):1552-64. PubMed ID: 26735843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insight Investigation of Active Palladium Surface Sites in Palladium-Ceria Catalysts for NO + CO Reaction.
    Tang K; Ren Y; Liu W; Wei J; Guo J; Wang S; Yang Y
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13614-13624. PubMed ID: 29620859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple, readily controllable palladium nanoparticle formation on surface-assembled viral nanotemplates.
    Manocchi AK; Horelik NE; Lee B; Yi H
    Langmuir; 2010 Mar; 26(5):3670-7. PubMed ID: 19919039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Employing high-resolution materials characterization to understand the effects of Pd nanoparticle structure on their activity as catalysts for olefin hydrogenation.
    Knecht MR; Pacardo DB
    Anal Bioanal Chem; 2010 Jun; 397(3):1137-55. PubMed ID: 20157698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of bacterial cells and amine-functionalized abiotic surfaces as support for Pd nanoparticle synthesis.
    De Corte S; Bechstein S; Lokanathan AR; Kjems J; Boon N; Meyer RL
    Colloids Surf B Biointerfaces; 2013 Feb; 102():898-904. PubMed ID: 23107967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of supported Pd catalysts: from the Pd precursor solution to the deposited Pd2+ phase.
    Agostini G; Groppo E; Piovano A; Pellegrini R; Leofanti G; Lamberti C
    Langmuir; 2010 Jul; 26(13):11204-11. PubMed ID: 20408525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability issues in Pd-based catalysts: the role of surface Pt in improving the stability and oxygen reduction reaction (ORR) activity.
    Singh RK; Rahul R; Neergat M
    Phys Chem Chem Phys; 2013 Aug; 15(31):13044-51. PubMed ID: 23817297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.
    Cao X; Fu Q; Luo Y
    Phys Chem Chem Phys; 2014 May; 16(18):8367-75. PubMed ID: 24658397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles.
    Griessen R; Strohfeldt N; Giessen H
    Nat Mater; 2016 Mar; 15(3):311-7. PubMed ID: 26569476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion.
    Kobayashi H; Kusada K; Kitagawa H
    Acc Chem Res; 2015 Jun; 48(6):1551-9. PubMed ID: 25993560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The irreversible formation of palladium carbide during hydrogenation of 1-pentyne over silica-supported palladium nanoparticles: in situ Pd K and L3 edge XAS.
    Tew MW; Nachtegaal M; Janousch M; Huthwelker T; van Bokhoven JA
    Phys Chem Chem Phys; 2012 Apr; 14(16):5761-8. PubMed ID: 22422024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding Li diffusion in Li-intercalation compounds.
    Van der Ven A; Bhattacharya J; Belak AA
    Acc Chem Res; 2013 May; 46(5):1216-25. PubMed ID: 22584006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles.
    Narayan TC; Hayee F; Baldi A; Leen Koh A; Sinclair R; Dionne JA
    Nat Commun; 2017 Jan; 8():14020. PubMed ID: 28091597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen.
    Zalineeva A; Baranton S; Coutanceau C; Jerkiewicz G
    Sci Adv; 2017 Feb; 3(2):e1600542. PubMed ID: 28168217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular ligand modulation of palladium nanocatalysts for highly efficient and robust heterogeneous oxidation of cyclohexenone to phenol.
    Xue T; Lin Z; Chiu CY; Li Y; Ruan L; Wang G; Zhao Z; Lee C; Duan X; Huang Y
    Sci Adv; 2017 Jan; 3(1):e1600615. PubMed ID: 28070555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shear displacement gradient in X-ray Bragg coherent diffractive imaging.
    Gorobtsov O; Singer A
    J Synchrotron Radiat; 2022 May; 29(Pt 3):866-870. PubMed ID: 35511019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.