These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29123132)

  • 1. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.
    Chiang PC; Tanady K; Huang LT; Chao L
    Sci Rep; 2017 Nov; 7(1):15139. PubMed ID: 29123132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wash-free instant detection of giant plasma membrane vesicles.
    Okada S; Yankawa S; Saitoh H
    Anal Biochem; 2018 Sep; 557():59-61. PubMed ID: 30030992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-Spanning Plasma Membranes Derived from Giant Plasma Membrane Vesicles.
    Teiwes NK; Mey I; Baumann PC; Strieker L; Unkelbach U; Steinem C
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25805-25812. PubMed ID: 34043315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biologically Complex Planar Cell Plasma Membranes Supported on Polyelectrolyte Cushions Enhance Transmembrane Protein Mobility and Retain Native Orientation.
    Liu HY; Chen WL; Ober CK; Daniel S
    Langmuir; 2018 Jan; 34(3):1061-1072. PubMed ID: 29020444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing Supported Cell Membranes with Controllable Orientation.
    Lyu SW; Wang JF; Chao L
    Sci Rep; 2019 Feb; 9(1):2747. PubMed ID: 30808885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.
    Richards MJ; Hsia CY; Singh RR; Haider H; Kumpf J; Kawate T; Daniel S
    Langmuir; 2016 Mar; 32(12):2963-74. PubMed ID: 26812542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supported Planar Mammalian Membranes as Models of in Vivo Cell Surface Architectures.
    Liu HY; Grant H; Hsu HL; Sorkin R; Bošković F; Wuite G; Daniel S
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35526-35538. PubMed ID: 28930438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion of Single-Pass Transmembrane Receptors: From the Plasma Membrane into Giant Liposomes.
    Worch R; Petrášek Z; Schwille P; Weidemann T
    J Membr Biol; 2017 Aug; 250(4):393-406. PubMed ID: 27826635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant Plasma Membrane Vesicles: An Experimental Tool for Probing the Effects of Drugs and Other Conditions on Membrane Domain Stability.
    Gerstle Z; Desai R; Veatch SL
    Methods Enzymol; 2018; 603():129-150. PubMed ID: 29673522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles.
    Baumgart T; Hammond AT; Sengupta P; Hess ST; Holowka DA; Baird BA; Webb WW
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3165-70. PubMed ID: 17360623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-Derived Plasma Membrane Vesicles Are Permeable to Hydrophilic Macromolecules.
    Skinkle AD; Levental KR; Levental I
    Biophys J; 2020 Mar; 118(6):1292-1300. PubMed ID: 32053777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting lipid vesicles from plasma membranes via self-assembly of clathrin-inspired scaffolding nanoparticles.
    Li Y; Zhang X; Lin J; Li R; Yue T
    Colloids Surf B Biointerfaces; 2019 Apr; 176():239-248. PubMed ID: 30623811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preserved transmembrane protein mobility in polymer-supported lipid bilayers derived from cell membranes.
    Pace H; Simonsson Nyström L; Gunnarsson A; Eck E; Monson C; Geschwindner S; Snijder A; Höök F
    Anal Chem; 2015 Sep; 87(18):9194-203. PubMed ID: 26268463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Cell Membrane Electrophoresis to Measure the Diffusivity of a Native Transmembrane Protein.
    Huang SH; Huang BC; Chao L
    Anal Chem; 2022 Mar; 94(10):4531-4537. PubMed ID: 35230091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs).
    Lanigan PM; Ninkovic T; Chan K; de Mello AJ; Willison KR; Klug DR; Templer RH; Neil MA; Ces O
    Lab Chip; 2009 Apr; 9(8):1096-101. PubMed ID: 19350091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. bSUM: A bead-supported unilamellar membrane system facilitating unidirectional insertion of membrane proteins into giant vesicles.
    Zheng H; Lee S; Llaguno MC; Jiang QX
    J Gen Physiol; 2016 Jan; 147(1):77-93. PubMed ID: 26712851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Can Giant Plasma Membrane Vesicles Serve as a Cellular Model for Controlled Transfer of Nanoparticles?
    Zartner L; Garni M; Craciun I; Einfalt T; Palivan CG
    Biomacromolecules; 2021 Jan; 22(1):106-115. PubMed ID: 32648740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model membrane platforms to study protein-membrane interactions.
    Sezgin E; Schwille P
    Mol Membr Biol; 2012 Aug; 29(5):144-54. PubMed ID: 22831167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The formation of giant plasma membrane vesicles enable new insights into the regulation of cholesterol efflux.
    Sedgwick A; Olivia Balmert M; D'Souza-Schorey C
    Exp Cell Res; 2018 Apr; 365(2):194-207. PubMed ID: 29522754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curvature- and Phase-Induced Protein Sorting Quantified in Transfected Cell-Derived Giant Vesicles.
    Moreno-Pescador G; Florentsen CD; Østbye H; Sønder SL; Boye TL; Veje EL; Sonne AK; Semsey S; Nylandsted J; Daniels R; Bendix PM
    ACS Nano; 2019 Jun; 13(6):6689-6701. PubMed ID: 31199124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.