These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 29124087)

  • 1. Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and
    Lepe-Soltero D; Armenta-Medina A; Xiang D; Datla R; Gillmor CS; Abreu-Goodger C
    Data Brief; 2017 Dec; 15():642-647. PubMed ID: 29124087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote.
    Armenta-Medina A; Lepe-Soltero D; Xiang D; Datla R; Abreu-Goodger C; Gillmor CS
    Dev Biol; 2017 Nov; 431(2):145-151. PubMed ID: 28912016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SERRATE interacts with the nuclear exosome targeting (NEXT) complex to degrade primary miRNA precursors in Arabidopsis.
    Bajczyk M; Lange H; Bielewicz D; Szewc L; Bhat SS; Dolata J; Kuhn L; Szweykowska-Kulinska Z; Gagliardi D; Jarmolowski A
    Nucleic Acids Res; 2020 Jul; 48(12):6839-6854. PubMed ID: 32449937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Characterization of Primary microRNA Transcripts.
    Chang TC; Mendell JT
    Methods Mol Biol; 2018; 1823():1-9. PubMed ID: 29959669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis.
    Yang L; Liu Z; Lu F; Dong A; Huang H
    Plant J; 2006 Sep; 47(6):841-50. PubMed ID: 16889646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms.
    Chang TC; Pertea M; Lee S; Salzberg SL; Mendell JT
    Genome Res; 2015 Sep; 25(9):1401-9. PubMed ID: 26290535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spliceosome disassembly factors ILP1 and NTR1 promote miRNA biogenesis in Arabidopsis thaliana.
    Wang J; Chen S; Jiang N; Li N; Wang X; Li Z; Li X; Liu H; Li L; Yang Y; Ni T; Yu C; Ma J; Zheng B; Ren G
    Nucleic Acids Res; 2019 Sep; 47(15):7886-7900. PubMed ID: 31216029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure determinants for accurate processing of miR172a in Arabidopsis thaliana.
    Werner S; Wollmann H; Schneeberger K; Weigel D
    Curr Biol; 2010 Jan; 20(1):42-8. PubMed ID: 20015654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RACK1 scaffold proteins influence miRNA abundance in Arabidopsis.
    Speth C; Willing EM; Rausch S; Schneeberger K; Laubinger S
    Plant J; 2013 Nov; 76(3):433-45. PubMed ID: 23941160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STV1, a ribosomal protein, binds primary microRNA transcripts to promote their interaction with the processing complex in Arabidopsis.
    Li S; Liu K; Zhang S; Wang X; Rogers K; Ren G; Zhang C; Yu B
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1424-1429. PubMed ID: 28115696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of pri-miRNA tertiary structure in miR-17~92 miRNA biogenesis.
    Chaulk SG; Thede GL; Kent OA; Xu Z; Gesner EM; Veldhoen RA; Khanna SK; Goping IS; MacMillan AM; Mendell JT; Young HS; Fahlman RP; Glover JN
    RNA Biol; 2011; 8(6):1105-14. PubMed ID: 21955497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of MicroRNA Processing Intermediates Through RNA Ligation Approaches.
    Moro B; Rojas AML; Palatnik JF
    Methods Mol Biol; 2019; 1932():261-283. PubMed ID: 30701507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis.
    Chen T; Cui P; Xiong L
    Nucleic Acids Res; 2015 Sep; 43(17):8283-98. PubMed ID: 26227967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis.
    Zhang S; Liu Y; Yu B
    PLoS Genet; 2014 Dec; 10(12):e1004841. PubMed ID: 25474114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative processing of primary miRNAs by DUS16 and DCL3 in the unicellular green alga
    Yamasaki T; Cerutti H
    Commun Integr Biol; 2017; 10(1):e1280208. PubMed ID: 28289490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-microRNA processing activity in nuclear extracts from Arabidopsis suspension cells.
    Yoshikawa M
    J Plant Res; 2017 Jan; 130(1):75-82. PubMed ID: 27885505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Arabidopsis MOS4-Associated Complex Promotes MicroRNA Biogenesis and Precursor Messenger RNA Splicing.
    Jia T; Zhang B; You C; Zhang Y; Zeng L; Li S; Johnson KCM; Yu B; Li X; Chen X
    Plant Cell; 2017 Oct; 29(10):2626-2643. PubMed ID: 28947490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global characterization of the Dicer-like protein DrnB roles in miRNA biogenesis in the social amoeba Dictyostelium discoideum.
    Liao Z; Kjellin J; Hoeppner MP; Grabherr M; Söderbom F
    RNA Biol; 2018; 15(7):937-954. PubMed ID: 29966484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs.
    Cai X; Hagedorn CH; Cullen BR
    RNA; 2004 Dec; 10(12):1957-66. PubMed ID: 15525708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into pri-miRNA processing and accumulation in plants.
    Zhang S; Liu Y; Yu B
    Wiley Interdiscip Rev RNA; 2015; 6(5):533-45. PubMed ID: 26119101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.