These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 2912430)

  • 1. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults.
    Stary HC
    Arteriosclerosis; 1989; 9(1 Suppl):I19-32. PubMed ID: 2912430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life.
    Stary HC
    Eur Heart J; 1990 Aug; 11 Suppl E():3-19. PubMed ID: 1699762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophages, macrophage foam cells, and eccentric intimal thickening in the coronary arteries of young children.
    Stary HC
    Atherosclerosis; 1987 Apr; 64(2-3):91-108. PubMed ID: 3606726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.
    Stary HC; Chandler AB; Dinsmore RE; Fuster V; Glagov S; Insull W; Rosenfeld ME; Schwartz CJ; Wagner WD; Wissler RW
    Circulation; 1995 Sep; 92(5):1355-74. PubMed ID: 7648691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Structural basis of stenosis of the coronary arteries in atherosclerosis].
    Zhdanov VS; Vikhert AM
    Arkh Patol; 1983; 45(5):14-9. PubMed ID: 6882238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. World Health organization (WHO) and the World Heart Federation (WHF) pathobiological determinants of atherosclerosis in youth study (WHO/WHF PBDAY Study) 1986-1996. Histomorphometry and histochemistry of atherosclerotic lesions in coronary arteries and the aorta in a young population.
    Kádár A; Mózes G; Illyés G; Schönfeld T; Kulka J; Sipos B; Glasz T; Tõkés AM; Szik A
    Nutr Metab Cardiovasc Dis; 1999 Oct; 9(5):220-7. PubMed ID: 10656168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the onset of atherosclerotic lesions in human coronary arteries.
    Velican C; Velican D
    Med Interne; 1979; 17(2):131-49. PubMed ID: 472636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural changes within the media of coronary arteries related to intimal thickening.
    Hartman JD
    Am J Pathol; 1977 Oct; 89(1):13-34. PubMed ID: 333934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of foam cells in human atherosclerotic lesions as macrophages using monoclonal antibodies.
    Klurfeld DM
    Arch Pathol Lab Med; 1985 May; 109(5):445-9. PubMed ID: 2580504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular pathology of homozygous familial hypercholesterolemia.
    Buja LM; Kovanen PT; Bilheimer DW
    Am J Pathol; 1979 Nov; 97(2):327-57. PubMed ID: 118674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apolipoprotein B accumulation and development of foam cell lesions in coronary arteries of hypercholesterolemic swine.
    Yamauchi Y; Hoff HF
    Lab Invest; 1984 Sep; 51(3):325-32. PubMed ID: 6381881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-localization of tissue factor and tissue factor pathway inhibitor in coronary atherosclerosis.
    Kaikita K; Takeya M; Ogawa H; Suefuji H; Yasue H; Takahashi K
    J Pathol; 1999 Jun; 188(2):180-8. PubMed ID: 10398162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased platelet deposition on atherosclerotic coronary arteries.
    van Zanten GH; de Graaf S; Slootweg PJ; Heijnen HF; Connolly TM; de Groot PG; Sixma JJ
    J Clin Invest; 1994 Feb; 93(2):615-32. PubMed ID: 8113399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atherosclerosis suppression in the left anterior descending coronary artery by the presence of a myocardial bridge: an ultrastructural study.
    Ishii T; Asuwa N; Masuda S; Ishikawa Y; Kiguchi H; Shimada K
    Mod Pathol; 1991 Jul; 4(4):424-31. PubMed ID: 1924274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The gelatinous plaque: its relation to coronary atherosclerosis.
    Velican C; Velican D
    Med Interne; 1980; 18(2):181-7. PubMed ID: 7394458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibrous and lipid-rich atherosclerotic plaques are part of interchangeable morphologies related to inflammation: a concept.
    van der Wal AC; Becker AE; van der Loos CM; Tigges AJ; Das PK
    Coron Artery Dis; 1994 Jun; 5(6):463-9. PubMed ID: 7952404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody.
    Kume S; Takeya M; Mori T; Araki N; Suzuki H; Horiuchi S; Kodama T; Miyauchi Y; Takahashi K
    Am J Pathol; 1995 Sep; 147(3):654-67. PubMed ID: 7545874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sex differences in age- and atherosclerosis-related changes of human coronary arteries.
    Velican D; Velican C
    Med Interne; 1980; 18(3):253-63. PubMed ID: 7414237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coronary ectasia in familial hypercholesterolemia: histopathologic study regarding matrix metalloproteinases.
    Kajinami K; Kasashima S; Oda Y; Koizumi J; Katsuda S; Mabuchi H
    Mod Pathol; 1999 Dec; 12(12):1174-80. PubMed ID: 10619272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biology of the smooth muscle cells in human atherosclerosis.
    Lavezzi AM; Ottaviani G; Matturri L
    APMIS; 2005 Feb; 113(2):112-21. PubMed ID: 15723685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.