BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29124390)

  • 1. The Liebau phenomenon: a translational approach to new paradigms of CSF circulation and related flow disturbances.
    Longatti P
    Childs Nerv Syst; 2018 Feb; 34(2):227-233. PubMed ID: 29124390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes.
    Hiermeier F; Männer J
    J Cardiovasc Dev Dis; 2017 Nov; 4(4):. PubMed ID: 29367548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube.
    Männer J; Wessel A; Yelbuz TM
    Dev Dyn; 2010 Apr; 239(4):1035-46. PubMed ID: 20235196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building Valveless Impedance Pumps From Biological Components: Progress and Challenges.
    Sarvazyan N
    Front Physiol; 2021; 12():770906. PubMed ID: 35173623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model of valveless pumping: a lumped model with time-dependent compliance, resistance, and inertia.
    Jung E
    Bull Math Biol; 2007 Oct; 69(7):2181-98. PubMed ID: 17457651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Output of a valveless Liebau pump with biologically relevant vessel properties and compression frequencies.
    Davtyan R; Sarvazyan NA
    Sci Rep; 2021 Jun; 11(1):11505. PubMed ID: 34075100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohybrid valveless pump-bot powered by engineered skeletal muscle.
    Li Z; Seo Y; Aydin O; Elhebeary M; Kamm RD; Kong H; Saif MTA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1543-1548. PubMed ID: 30635415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimensionless analysis of valveless pumping in a thick-wall elastic tube: Application to the tubular embryonic heart.
    Kozlovsky P; Rosenfeld M; Jaffa AJ; Elad D
    J Biomech; 2015 Jun; 48(9):1652-61. PubMed ID: 25835790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study of an asymmetric valveless pump to elucidate insights into strategies for pediatric extravascular flow augmentation.
    Anatol J; García-Díaz M; Barrios-Collado C; Moneo-Fernández JA; Horvath M; Parra T; Castro-Ruiz F; Roche ET; Sierra-Pallares J
    Sci Rep; 2022 Dec; 12(1):22165. PubMed ID: 36550224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Form follows function: estimation of CSF flow in the third ventricle-aqueduct-fourth ventricle complex modeled as a diffuser/nozzle pump.
    Longatti P; Fiorindi A; Peruzzo P; Basaldella L; Susin FM
    J Neurosurg; 2019 Aug; 133(3):894-901. PubMed ID: 31419793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsatile cerebrospinal fluid dynamics in the human brain.
    Linninger AA; Tsakiris C; Zhu DC; Xenos M; Roycewicz P; Danziger Z; Penn R
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):557-65. PubMed ID: 15825857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography.
    Greitz D
    Acta Radiol Suppl; 1993; 386():1-23. PubMed ID: 8517189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-vitro investigation of a potential wave pumping effect in human aorta.
    Pahlevan NM; Gharib M
    J Biomech; 2013 Sep; 46(13):2122-9. PubMed ID: 23915578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Xenopus ependymal cilia drive embryonic CSF circulation and brain development independently of cardiac pulsatile forces.
    Dur AH; Tang T; Viviano S; Sekuri A; Willsey HR; Tagare HD; Kahle KT; Deniz E
    Fluids Barriers CNS; 2020 Dec; 17(1):72. PubMed ID: 33308296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac-driven Pulsatile Motion of Intracranial Cerebrospinal Fluid Visualized Based on a Correlation Mapping Technique.
    Yatsushiro S; Sunohara S; Hayashi N; Hirayama A; Matsumae M; Atsumi H; Kuroda K
    Magn Reson Med Sci; 2018 Apr; 17(2):151-160. PubMed ID: 29187679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillations of Subarachnoid Space Width as a Potential Marker of Cerebrospinal Fluid Pulsatility.
    Gruszecki M; Nuckowska MK; Szarmach A; Radkowski M; Szalewska D; Waskow M; Szurowska E; Frydrychowski AF; Demkow U; Winklewski PJ
    Adv Exp Med Biol; 2018; 1070():37-47. PubMed ID: 29435957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric Elastomer Actuator-Based Valveless Impedance-Driven Pumping for Meso- and Macroscale Applications.
    Benouhiba A; Walter A; Jahren SE; Martinez T; Clavica F; Obrist D; Civet Y; Perriard Y
    Soft Robot; 2024 Apr; 11(2):198-206. PubMed ID: 37729065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion-weighted magnetic resonance imaging of cerebrospinal fluid in patients with and without communicating hydrocephalus.
    Nasel C; Gentzsch S; Heimberger K
    Acta Radiol; 2007 Sep; 48(7):768-73. PubMed ID: 17729009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of pulsations in communicating hydrocephalus.
    Egnor M; Zheng L; Rosiello A; Gutman F; Davis R
    Pediatr Neurosurg; 2002 Jun; 36(6):281-303. PubMed ID: 12077474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus.
    Qvarlander S; Ambarki K; Wåhlin A; Jacobsson J; Birgander R; Malm J; Eklund A
    Acta Neurol Scand; 2017 May; 135(5):576-584. PubMed ID: 27388230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.