BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29124562)

  • 1. Video-based heart rate monitoring across a range of skin pigmentations during an acute hypoxic challenge.
    Addison PS; Jacquel D; Foo DMH; Borg UR
    J Clin Monit Comput; 2018 Oct; 32(5):871-880. PubMed ID: 29124562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Video-Based Physiologic Monitoring During an Acute Hypoxic Challenge: Heart Rate, Respiratory Rate, and Oxygen Saturation.
    Addison PS; Jacquel D; Foo DMH; Antunes A; Borg UR
    Anesth Analg; 2017 Sep; 125(3):860-873. PubMed ID: 28333706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Video pulse rate variability analysis in stationary and motion conditions.
    Melchor Rodríguez A; Ramos-Castro J
    Biomed Eng Online; 2018 Jan; 17(1):11. PubMed ID: 29378598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A motion-tolerant approach for monitoring SpO
    Fan F; Yan Y; Tang Y; Zhang H
    Comput Biol Med; 2017 Dec; 91():291-305. PubMed ID: 29102826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor.
    Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Running wavelet archetype aids the determination of heart rate from the video photoplethysmogram during motion.
    Addison PS; Foo DMH; Jacquel D
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():734-737. PubMed ID: 29059977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Video Encoding on Camera-Based Heart Rate Estimation.
    Rapczynski M; Werner P; Al-Hamadi A
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3360-3370. PubMed ID: 30872217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial evaluation of prospective cardiac triggering using photoplethysmography signals recorded with a video camera compared to pulse oximetry and electrocardiography at 7T MRI.
    Spicher N; Kukuk M; Maderwald S; Ladd ME
    Biomed Eng Online; 2016 Nov; 15(1):126. PubMed ID: 27881126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous respiratory rate monitoring during an acute hypoxic challenge using a depth sensing camera.
    Addison PS; Smit P; Jacquel D; Borg UR
    J Clin Monit Comput; 2020 Oct; 34(5):1025-1033. PubMed ID: 31701371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pilot Study Assessing the Influence of Skin Type on the Heart Rate Measurements Obtained by Photoplethysmography with the Apple Watch.
    Sañudo B; De Hoyo M; Muñoz-López A; Perry J; Abt G
    J Med Syst; 2019 May; 43(7):195. PubMed ID: 31119387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Ambient Lighting and Skin Tone on Estimation of Heart Rate and Pulse Transit Time from Video Plethysmography.
    Shirbani F; Hui N; Tan I; Butlin M; Avolio AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2642-2645. PubMed ID: 33018549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OxiMA: A Frequency-Domain Approach to Address Motion Artifacts in Photoplethysmograms for Improved Estimation of Arterial Oxygen Saturation and Pulse Rate.
    Harvey J; Salehizadeh SMA; Mendelson Y; Chon KH
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):311-318. PubMed ID: 29993498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lock-in technique for extraction of pulse rates and associated confidence levels from video.
    Eaton A; Vishwanath K; Cheng CH; Paige Lloyd E; Hugenberg K
    Appl Opt; 2018 Jun; 57(16):4360-4367. PubMed ID: 29877379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.
    Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heart Rate and Heart Rate Variability From Single-Channel Video and ICA Integration of Multiple Signals.
    Favilla R; Zuccala VC; Coppini G
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2398-2408. PubMed ID: 30418892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Motion Artifacts in Photoplethysmograph Sensors during Intensive Exercise for Accurate Heart Rate Calculation Based on Frequency Estimation and Notch Filtering.
    Wang M; Li Z; Zhang Q; Wang G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-contact high precision pulse-rate monitoring system for moving subjects in different motion states.
    Zhang Q; Lin X; Zhang Y; Liu Q; Cai F
    Med Biol Eng Comput; 2023 Oct; 61(10):2769-2783. PubMed ID: 37474842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision Heart Rate Estimation Using a PPG Sensor Patch Equipped with New Algorithms of Pre-Quality Checking and Hankel Decomposition.
    Thakur S; Chao PC; Tsai CH
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Video Based Heart Rate Monitoring.
    Lin J; Rozado D; Duenser A
    Stud Health Technol Inform; 2015; 214():146-51. PubMed ID: 26210432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.