These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29125063)

  • 1. Implantable systems for drug delivery to the brain.
    Kaurav H; Kapoor DN
    Ther Deliv; 2017 Dec; 8(12):1097-1107. PubMed ID: 29125063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art.
    Karim R; Palazzo C; Evrard B; Piel G
    J Control Release; 2016 Apr; 227():23-37. PubMed ID: 26892752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug delivery to the brain using polymers.
    Domb A; Maniar M; Bogdansky S; Chasin M
    Crit Rev Ther Drug Carrier Syst; 1991; 8(1):1-17. PubMed ID: 1868550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Polymeric Implants.
    Ahmed KK; Tamer MA; Ghareeb MM; Salem AK
    AAPS PharmSciTech; 2019 Sep; 20(7):300. PubMed ID: 31482251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent induced phase inversion-based in situ forming controlled release drug delivery implants.
    Thakur RR; McMillan HL; Jones DS
    J Control Release; 2014 Feb; 176():8-23. PubMed ID: 24374003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantable and transdermal polymeric drug delivery technologies for the treatment of central nervous system disorders.
    Govender T; Choonara YE; Kumar P; Bijukumar D; du Toit LC; Modi G; Naidoo D; Pillay V
    Pharm Dev Technol; 2017 Jun; 22(4):476-486. PubMed ID: 27268737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantable polymers for tirapazamine treatments of experimental intracranial malignant glioma.
    Yuan X; Tabassi K; Williams JA
    Radiat Oncol Investig; 1999; 7(4):218-30. PubMed ID: 10492162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants.
    Motulsky A; Lafleur M; Couffin-Hoarau AC; Hoarau D; Boury F; Benoit JP; Leroux JC
    Biomaterials; 2005 Nov; 26(31):6242-53. PubMed ID: 15916802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases.
    Popovic N; Brundin P
    Int J Pharm; 2006 May; 314(2):120-6. PubMed ID: 16529886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of implantable and insertable drug delivery systems.
    Kleiner LW; Wright JC; Wang Y
    J Control Release; 2014 May; 181():1-10. PubMed ID: 24548479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of stimuli-responsive polymers as anticancer drug delivery systems.
    Taghizadeh B; Taranejoo S; Monemian SA; Salehi Moghaddam Z; Daliri K; Derakhshankhah H; Derakhshani Z
    Drug Deliv; 2015 Feb; 22(2):145-55. PubMed ID: 24547737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ forming implants - an attractive formulation principle for parenteral depot formulations.
    Kempe S; Mäder K
    J Control Release; 2012 Jul; 161(2):668-79. PubMed ID: 22543012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: which kind of drug delivery system is better for glioblastoma chemotherapy?
    Qu J; Zhang L; Chen Z; Mao G; Gao Z; Lai X; Zhu X; Zhu J
    Drug Deliv; 2016 Nov; 23(9):3408-3416. PubMed ID: 27181462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive in vivo characterization of microclimate pH inside in situ forming PLGA implants using multispectral fluorescence imaging.
    Schädlich A; Kempe S; Mäder K
    J Control Release; 2014 Apr; 179():52-62. PubMed ID: 24503251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook.
    Talebian S; Foroughi J; Wade SJ; Vine KL; Dolatshahi-Pirouz A; Mehrali M; Conde J; Wallace GG
    Adv Mater; 2018 Aug; 30(31):e1706665. PubMed ID: 29756237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ forming implants for the delivery of metronidazole to periodontal pockets: formulation and drug release studies.
    Kilicarslan M; Koerber M; Bodmeier R
    Drug Dev Ind Pharm; 2014 May; 40(5):619-24. PubMed ID: 24369747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV-vis imaging.
    Sun Y; Jensen H; Petersen NJ; Larsen SW; Østergaard J
    J Pharm Biomed Anal; 2018 Feb; 150():95-106. PubMed ID: 29216591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First report on the efficacy of l-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs.
    Plourde F; Motulsky A; Couffin-Hoarau AC; Hoarau D; Ong H; Leroux JC
    J Control Release; 2005 Nov; 108(2-3):433-41. PubMed ID: 16182402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review.
    Xinming L; Yingde C; Lloyd AW; Mikhalovsky SV; Sandeman SR; Howel CA; Liewen L
    Cont Lens Anterior Eye; 2008 Apr; 31(2):57-64. PubMed ID: 17962066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.