These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29125134)

  • 1. Implicit relevance feedback from electroencephalography and eye tracking in image search.
    Golenia JE; Wenzel MA; Bogojeski M; Blankertz B
    J Neural Eng; 2018 Apr; 15(2):026002. PubMed ID: 29125134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time inference of word relevance from electroencephalogram and eye gaze.
    Wenzel MA; Bogojeski M; Blankertz B
    J Neural Eng; 2017 Oct; 14(5):056007. PubMed ID: 28555611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison study of visually stimulated brain-computer and eye-tracking interfaces.
    Suefusa K; Tanaka T
    J Neural Eng; 2017 Jun; 14(3):036009. PubMed ID: 28198356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Masked and unmasked error-related potentials during continuous control and feedback.
    Lopes Dias C; Sburlea AI; Müller-Putz GR
    J Neural Eng; 2018 Jun; 15(3):036031. PubMed ID: 29557346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active visual search in non-stationary scenes: coping with temporal variability and uncertainty.
    Ušćumlić M; Blankertz B
    J Neural Eng; 2016 Feb; 13(1):016015. PubMed ID: 26726921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Usability and Workload of Access Technology for People With Severe Motor Impairment: A Comparison of Brain-Computer Interfacing and Eye Tracking.
    Pasqualotto E; Matuz T; Federici S; Ruf CA; Bartl M; Olivetti Belardinelli M; Birbaumer N; Halder S
    Neurorehabil Neural Repair; 2015; 29(10):950-7. PubMed ID: 25753951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG source space analysis of the supervised factor analytic approach for the classification of multi-directional arm movement.
    Shenoy Handiru V; Vinod AP; Guan C
    J Neural Eng; 2017 Aug; 14(4):046008. PubMed ID: 28516901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid EEG and eye movement interface to multi-directional target selection.
    Kim M; Chae Y; Jo S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():763-6. PubMed ID: 24109799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH; Williamson J; Won DO; Fazli S; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1443-1459. PubMed ID: 29985154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic co-adaptive brain-computer interfacing.
    Bryan MJ; Martin SA; Cheung W; Rao RP
    J Neural Eng; 2013 Dec; 10(6):066008. PubMed ID: 24140680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a hybrid mental speller combining EEG-based brain-computer interface and webcam-based eye-tracking.
    Lee JH; Lim JH; Hwang HJ; Im CH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2240-2. PubMed ID: 24110169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A brain-computer interface method combined with eye tracking for 3D interaction.
    Lee EC; Woo JC; Kim JH; Whang M; Park KR
    J Neurosci Methods; 2010 Jul; 190(2):289-98. PubMed ID: 20580646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?
    Wenzel MA; Almeida I; Blankertz B
    PLoS One; 2016; 11(10):e0165556. PubMed ID: 27792781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of a low-cost noninvasive hybrid interface based on EEG and eye movement.
    Kim M; Kim BH; Jo S
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):159-68. PubMed ID: 25376041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses.
    Shin J; Kim DW; Müller KR; Hwang HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Group Perception via a Collaborative Brain-Computer Interface.
    Valeriani D; Poli R; Cinel C
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1238-1248. PubMed ID: 28541187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of multimodal and enriched feedback on SMR-BCI performance.
    Sollfrank T; Ramsay A; Perdikis S; Williamson J; Murray-Smith R; Leeb R; Millán JDR; Kübler A
    Clin Neurophysiol; 2016 Jan; 127(1):490-498. PubMed ID: 26138148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.