These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 29125153)
1. Metal-enhanced Förster resonance energy transfer (ME-FRET) in anthracene/tetracene-doped crystal systems. Karnam L; Brambilla L; Del Zoppo M; Bertarelli C Phys Chem Chem Phys; 2017 Nov; 19(45):30734-30739. PubMed ID: 29125153 [TBL] [Abstract][Full Text] [Related]
2. The influence of silver nanostructures formed in situ in silica sol-gel derived films on the rate of Förster resonance energy transfer. Holmes-Smith AS; McDowell GR; Toury M; McLoskey D; Hungerford G Chemphyschem; 2012 Feb; 13(2):535-41. PubMed ID: 22213636 [TBL] [Abstract][Full Text] [Related]
3. Controlled transition dipole alignment of energy donor and energy acceptor molecules in doped organic crystals, and the effect on intermolecular Förster energy transfer. Wang H; Yue B; Xie Z; Gao B; Xu Y; Liu L; Sun H; Ma Y Phys Chem Chem Phys; 2013 Mar; 15(10):3527-34. PubMed ID: 23376957 [TBL] [Abstract][Full Text] [Related]
5. Förster resonance energy transfer (FRET) with a donor-acceptor system adsorbed on silver or gold nanoisland films. Giorgetti E; Cicchi S; Muniz-Miranda M; Margheri G; Del Rosso T; Giusti A; Rindi A; Ghini G; Sottini S; Marcelli A; Foggi P Phys Chem Chem Phys; 2009 Nov; 11(42):9798-803. PubMed ID: 19851559 [TBL] [Abstract][Full Text] [Related]
6. A homogeneous assay for highly sensitive detection of CaMV35S promoter in transgenic soybean by förster resonance energy transfer between nitrogen-doped graphene quantum dots and Ag nanoparticles. Li Y; Sun L; Qian J; Wang C; Liu Q; Han E; Hao N; Zhang L; Cai J; Wang K Anal Chim Acta; 2016 Dec; 948():90-97. PubMed ID: 27871615 [TBL] [Abstract][Full Text] [Related]
7. Giant enhancement of fluorescence resonance energy transfer based on nanoporous gold with small amount of residual silver. Cui L; Zhang L; Li Z; Jing Z; Huang L; Zeng H Nanotechnology; 2024 Feb; 35(19):. PubMed ID: 38241734 [TBL] [Abstract][Full Text] [Related]
8. Long-Range and High-Efficiency Plasmon-Assisted Förster Resonance Energy Transfer. Hamza AO; Al-Dulaimi A; Bouillard JG; Adawi AM J Phys Chem C Nanomater Interfaces; 2023 Nov; 127(44):21611-21616. PubMed ID: 37969925 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Förster Resonance Energy Transfer (FRET) on Single Metal Particle. Zhang J; Fu Y; Lakowicz JR J Phys Chem C Nanomater Interfaces; 2007 Jan; 111(1):50-56. PubMed ID: 19079780 [TBL] [Abstract][Full Text] [Related]
10. A cascade FRET-mediated ratiometric sensor for Cu2+ ions based on dual fluorescent ligand-coated polymer nanoparticles. Frigoli M; Ouadahi K; Larpent C Chemistry; 2009 Aug; 15(33):8319-30. PubMed ID: 19575425 [TBL] [Abstract][Full Text] [Related]
11. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor-Acceptor Assembly. Field LD; Walper SA; Susumu K; Oh E; Medintz IL; Delehanty JB Sensors (Basel); 2015 Dec; 15(12):30457-68. PubMed ID: 26690153 [TBL] [Abstract][Full Text] [Related]
12. Enhanced photoluminescence emission from anthracene-doped polyphenylsiloxane glass. Kimura M; Tarutani N; Takahashi M; Karna S; Neogi A; Shimada R Opt Lett; 2013 Dec; 38(24):5224-7. PubMed ID: 24322223 [TBL] [Abstract][Full Text] [Related]
13. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer. Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807 [TBL] [Abstract][Full Text] [Related]
14. Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device. Akhavan S; Akgul MZ; Hernandez-Martinez PL; Demir HV ACS Nano; 2017 Jun; 11(6):5430-5439. PubMed ID: 28528543 [TBL] [Abstract][Full Text] [Related]
15. Metal-Enhanced Fluorescence: Ultrafast Energy Transfer from Dyes in a Polymer Film to Metal Nanoparticles. Lee J; Pang Y J Nanosci Nanotechnol; 2016 Feb; 16(2):1629-32. PubMed ID: 27433635 [TBL] [Abstract][Full Text] [Related]
16. Plasmon-assisted Förster resonance energy transfer at the single-molecule level in the moderate quenching regime. Bohlen J; Cuartero-González Á; Pibiri E; Ruhlandt D; Fernández-Domínguez AI; Tinnefeld P; Acuna GP Nanoscale; 2019 Apr; 11(16):7674-7681. PubMed ID: 30946424 [TBL] [Abstract][Full Text] [Related]
17. White light generation using Förster resonance energy transfer between 3-hydroxyisoquinoline and Nile Red. Joshi NK; Polgar AM; Steer RP; Paige MF Photochem Photobiol Sci; 2016 May; 15(5):609-17. PubMed ID: 26928071 [TBL] [Abstract][Full Text] [Related]
18. Fluorescent sensor for water based on photo-induced electron transfer and Förster resonance energy transfer: anthracene-(aminomethyl)phenylboronic acid ester-BODIPY structure. Jinbo D; Imato K; Ooyama Y RSC Adv; 2019 May; 9(27):15335-15340. PubMed ID: 35514838 [TBL] [Abstract][Full Text] [Related]
19. Dynamic Photochromic Polymer Nanoparticles Based on Matrix-Dependent Förster Resonance Energy Transfer and Aggregation-Induced Emission Properties. Tao M; Liang X; Guo J; Zheng S; Qi Q; Cao Z; Mi Y; Zhao Z ACS Appl Mater Interfaces; 2021 Jul; 13(28):33574-33583. PubMed ID: 34247480 [TBL] [Abstract][Full Text] [Related]
20. Direct Measurement of Polymer-Chain-End-to-End Distances by Using RAFT Chain Transfer Agent as the FRET Acceptor. Wang Y; Fortenberry AW; Zhang W; Simon YC; Qiang Z J Phys Chem B; 2023 Apr; 127(13):3100-3108. PubMed ID: 36976573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]