These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 29125297)
1. Identification of Protein-Ligand Binding Sites by Sequence Information and Ensemble Classifier. Ding Y; Tang J; Guo F J Chem Inf Model; 2017 Dec; 57(12):3149-3161. PubMed ID: 29125297 [TBL] [Abstract][Full Text] [Related]
2. SXGBsite: Prediction of Protein-Ligand Binding Sites Using Sequence Information and Extreme Gradient Boosting. Zhao Z; Xu Y; Zhao Y Genes (Basel); 2019 Nov; 10(12):. PubMed ID: 31771119 [TBL] [Abstract][Full Text] [Related]
3. A Sequence-Based Dynamic Ensemble Learning System for Protein Ligand-Binding Site Prediction. Chen P; Hu S; Zhang J; Gao X; Li J; Xia J; Wang B IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):901-912. PubMed ID: 26661785 [TBL] [Abstract][Full Text] [Related]
5. Identification of DNA-protein Binding Sites through Multi-Scale Local Average Blocks on Sequence Information. Shen C; Ding Y; Tang J; Song J; Guo F Molecules; 2017 Nov; 22(12):. PubMed ID: 29182548 [TBL] [Abstract][Full Text] [Related]
6. Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering. Yu DJ; Hu J; Yang J; Shen HB; Tang J; Yang JY IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):994-1008. PubMed ID: 24334392 [TBL] [Abstract][Full Text] [Related]
7. Identification of RNA-binding sites in proteins by integrating various sequence information. Wang CC; Fang Y; Xiao J; Li M Amino Acids; 2011 Jan; 40(1):239-48. PubMed ID: 20549269 [TBL] [Abstract][Full Text] [Related]
8. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing. Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098 [TBL] [Abstract][Full Text] [Related]
9. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment. Ashtawy HM; Mahapatra NR J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087 [TBL] [Abstract][Full Text] [Related]
10. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes. Ashtawy HM; Mahapatra NR BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685 [TBL] [Abstract][Full Text] [Related]
11. Prediction of nicotinamide adenine dinucleotide interacting sites based on ensemble support vector machine. Wang X; Wang CC; Zhang YQ; Mi G; Zhang J; Li ML Protein Pept Lett; 2012 May; 19(5):559-66. PubMed ID: 22316310 [TBL] [Abstract][Full Text] [Related]
12. EL_PSSM-RT: DNA-binding residue prediction by integrating ensemble learning with PSSM Relation Transformation. Zhou J; Lu Q; Xu R; He Y; Wang H BMC Bioinformatics; 2017 Aug; 18(1):379. PubMed ID: 28851273 [TBL] [Abstract][Full Text] [Related]
13. MPLs-Pred: Predicting Membrane Protein-Ligand Binding Sites Using Hybrid Sequence-Based Features and Ligand-Specific Models. Lu C; Liu Z; Zhang E; He F; Ma Z; Wang H Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31247932 [TBL] [Abstract][Full Text] [Related]
14. MIonSite: Ligand-specific prediction of metal ion-binding sites via enhanced AdaBoost algorithm with protein sequence information. Qiao L; Xie D Anal Biochem; 2019 Feb; 566():75-88. PubMed ID: 30414728 [TBL] [Abstract][Full Text] [Related]
15. Predicting protein-ligand binding residues with deep convolutional neural networks. Cui Y; Dong Q; Hong D; Wang X BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287 [TBL] [Abstract][Full Text] [Related]
16. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction. Ashtawy HM; Mahapatra NR IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892 [TBL] [Abstract][Full Text] [Related]
17. Recognizing five molecular ligand-binding sites with similar chemical structure. Hu X; Ge R; Feng Z J Comput Chem; 2020 Jan; 41(2):110-118. PubMed ID: 31642535 [TBL] [Abstract][Full Text] [Related]
18. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach. Estrada T; Zhang B; Cicotti P; Armen RS; Taufer M Comput Biol Med; 2012 Jul; 42(7):758-71. PubMed ID: 22658682 [TBL] [Abstract][Full Text] [Related]
19. HEMEsPred: Structure-Based Ligand-Specific Heme Binding Residues Prediction by Using Fast-Adaptive Ensemble Learning Scheme. Zhang J; Chai H; Gao B; Yang G; Ma Z IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):147-156. PubMed ID: 28029626 [TBL] [Abstract][Full Text] [Related]
20. TargetATPsite: a template-free method for ATP-binding sites prediction with residue evolution image sparse representation and classifier ensemble. Yu DJ; Hu J; Huang Y; Shen HB; Qi Y; Tang ZM; Yang JY J Comput Chem; 2013 Apr; 34(11):974-85. PubMed ID: 23288787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]