These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29125576)

  • 21. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash.
    Huang SC; Chang FC; Lo SL; Lee MY; Wang CF; Lin JD
    J Hazard Mater; 2007 Jun; 144(1-2):52-8. PubMed ID: 17118542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lightweight Aggregate Made from Dredged Material in Green Roof Construction for Stormwater Management.
    Liu R; Coffman R
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Utilization of lignite power generation residues for the production of lightweight aggregates.
    Anagnostopoulos IM; Stivanakis VE
    J Hazard Mater; 2009 Apr; 163(1):329-36. PubMed ID: 18804911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recycling of harbor sediment as lightweight aggregate.
    Wei YL; Yang JC; Lin YY; Chuang SY; Wang HP
    Mar Pollut Bull; 2008; 57(6-12):867-72. PubMed ID: 18471834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilization of water-based drilling cuttings from offshore oil development to manufacture lightweight aggregates: a case study in the Bohai oil field, China.
    Liu W; Li M; Yuan H; Geng T; Li X; Zhang Z; He D
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4837-4852. PubMed ID: 35974276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge.
    Tsai CC; Wang KS; Chiou IJ
    J Hazard Mater; 2006 Jun; 134(1-3):87-93. PubMed ID: 16386840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Influence of Sewage Sludge Content and Sintering Temperature on Selected Properties of Lightweight Expanded Clay Aggregate.
    Latosińska J; Żygadło M; Czapik P
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of fine sediments for making lightweight aggregate.
    Hung MF; Hwang CL
    Waste Manag Res; 2007 Oct; 25(5):449-56. PubMed ID: 17985670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manufacturing of Lightweight Aggregates as an Auspicious Method of Sewage Sludge Utilization.
    Korol J; Głodniok M; Hejna A; Pawlik T; Chmielnicki B; Bondaruk J
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33321852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of lightweight aggregate from dry sewage sludge and coal ash.
    Wang X; Jin Y; Wang Z; Nie Y; Huang Q; Wang Q
    Waste Manag; 2009 Apr; 29(4):1330-5. PubMed ID: 19008090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates.
    Quina MJ; Bordado JM; Quinta-Ferreira RM
    Waste Manag; 2014 Feb; 34(2):430-8. PubMed ID: 24238798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leachability of metals from sludge-based artificial lightweight aggregate.
    Chang FC; Lo SL; Lee MY; Ko CH; Lin JD; Huang SC; Wang CF
    J Hazard Mater; 2007 Jul; 146(1-2):98-105. PubMed ID: 17222508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microstructural Characterization of Alkali-Activated Composites of Lightweight Aggregates (LWAs) Embedded in Alkali-Activated Foam (AAF) Matrices.
    Traven K; Wisniewski W; Češnovar M; Ducman V
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manufacturing of lightweight aggregates from biomass fly ash, beer bagasse, Zn-rich industrial sludge and clay by slow firing.
    Moreno-Maroto JM; Camacho PN; Cotes-Palomino T; García CM; Alonso-Azcárate J
    J Environ Manage; 2019 Sep; 246():785-795. PubMed ID: 31228692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing Functionality of Epoxy-TiO
    Lim T; Lee JH; Mun JH; Yang KH; Ju S; Jeong SM
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33081225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Experimental Process Design of Artificial Lightweight Aggregates Using an Orthogonal Array Table and Analysis by Machine Learning.
    Wie YM; Lee KG; Lee KH; Ko T; Lee KH
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33297369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilization of shale cuttings in production of lightweight aggregates.
    Piszcz-Karaś K; Klein M; Hupka J; Łuczak J
    J Environ Manage; 2019 Feb; 231():232-240. PubMed ID: 30342336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Valorization of lignite combustion residues and ferroalumina in the production of aggregates.
    Anagnostopoulos IM; Stivanakis VE; Angelopoulos GN; Papamantellos DC
    J Hazard Mater; 2010 Feb; 174(1-3):506-11. PubMed ID: 19850411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural concretes with waste-based lightweight aggregates: from landfill to engineered materials.
    De'Gennaro R; Graziano SF; Cappelletti P; Colella A; Dondi M; Langella A; De'Gennaro M
    Environ Sci Technol; 2009 Sep; 43(18):7123-9. PubMed ID: 19806752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reuse of water treatment plant sludge and dam sediment in brick-making.
    Huang C; Pan JR; Sun KD; Liaw CT
    Water Sci Technol; 2001; 44(10):273-7. PubMed ID: 11794666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.