These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 29126025)
21. Accelerated ageing of an EAF black slag by carbonation and percolation for long-term behaviour assessment. Gurtubay L; Gallastegui G; Elias A; Rojo N; Barona A J Environ Manage; 2014 Jul; 140():45-50. PubMed ID: 24726964 [TBL] [Abstract][Full Text] [Related]
22. Study of the leaching behaviour of ladle slags by means of leaching tests combined with geochemical modelling and mineralogical investigations. Loncnar M; van der Sloot HA; Mladenovič A; Zupančič M; Kobal L; Bukovec P J Hazard Mater; 2016 Nov; 317():147-157. PubMed ID: 27262282 [TBL] [Abstract][Full Text] [Related]
23. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. van Zomeren A; van der Laan SR; Kobesen HB; Huijgen WJ; Comans RN Waste Manag; 2011 Nov; 31(11):2236-44. PubMed ID: 21741816 [TBL] [Abstract][Full Text] [Related]
24. Comparing Properties of Concrete Containing Electric Arc Furnace Slag and Granulated Blast Furnace Slag. Lee JY; Choi JS; Yuan TF; Yoon YS; Mitchell D Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035545 [TBL] [Abstract][Full Text] [Related]
25. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing. Liapis I; Papayianni I J Hazard Mater; 2015; 283():89-97. PubMed ID: 25261762 [TBL] [Abstract][Full Text] [Related]
26. Utilization possibilities of steel slag as backfill material in coastal structures. Tozsin G; Yonar F; Yucel O; Dikbas A Sci Rep; 2023 Mar; 13(1):4318. PubMed ID: 36922523 [TBL] [Abstract][Full Text] [Related]
27. Reuse of steel slag in bituminous paving mixtures. Sorlini S; Sanzeni A; Rondi L J Hazard Mater; 2012 Mar; 209-210():84-91. PubMed ID: 22305201 [TBL] [Abstract][Full Text] [Related]
28. Use of ladle furnace slag containing heavy metals as a binding material in civil engineering. Xu B; Yi Y Sci Total Environ; 2020 Feb; 705():135854. PubMed ID: 31972921 [TBL] [Abstract][Full Text] [Related]
29. [Phosphorus adsorption and regeneration of electric arc furnace steel slag as wetland medium]. Zhai LH; He LS; Xi BD; Chen Y; Meng R; Huo SL; Liu HL Huan Jing Ke Xue; 2008 Dec; 29(12):3410-4. PubMed ID: 19256377 [TBL] [Abstract][Full Text] [Related]
30. Molybdate adsorption from steel slag eluates by subsoils. Matern K; Rennert T; Mansfeldt T Chemosphere; 2013 Nov; 93(9):2108-15. PubMed ID: 23973286 [TBL] [Abstract][Full Text] [Related]
31. Utilization of Malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature. Omale SO; Choong TSY; Abdullah LC; Siajam SI; Yip MW Heliyon; 2019 Oct; 5(10):e02602. PubMed ID: 31667417 [TBL] [Abstract][Full Text] [Related]
32. The Potential of Ladle Slag and Electric Arc Furnace Slag use in Synthesizing Alkali Activated Materials; the Influence of Curing on Mechanical Properties. Češnovar M; Traven K; Horvat B; Ducman V Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30974853 [TBL] [Abstract][Full Text] [Related]
33. Archaeometallurgical characterisation of ancient copper slags from pre-Harappan site, Kunal, India. Kanth AP; Singh MR; Mani BR Anal Sci Adv; 2022 Aug; 3(7-8):226-234. PubMed ID: 38716081 [TBL] [Abstract][Full Text] [Related]
34. Effect of electric arc furnace slag on growth and physiology of maize (Zea mays L.). Radić S; Crnojević H; Sandev D; Jelić S; Sedlar Z; Glavaš K; Pevalek-Kozlina B Acta Biol Hung; 2013 Dec; 64(4):490-9. PubMed ID: 24275594 [TBL] [Abstract][Full Text] [Related]
35. Adverse Effects of Using Metallurgical Slags as Supplementary Cementitious Materials and Aggregate: A Review. Zhao Q; Pang L; Wang D Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683104 [TBL] [Abstract][Full Text] [Related]
36. Environmental behaviour of iron and steel slags in coastal settings. Riley AL; Cameron J; Burke IT; Onnis P; MacDonald JM; Gandy CJ; Crane RA; Byrne P; Comber S; Jarvis AP; Hudson-Edwards KA; Mayes WM Environ Sci Pollut Res Int; 2024 Jun; 31(29):42428-42444. PubMed ID: 38877192 [TBL] [Abstract][Full Text] [Related]
37. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage. Aula M; Mäkinen A; Fabritius T Appl Spectrosc; 2014; 68(1):26-32. PubMed ID: 24405950 [TBL] [Abstract][Full Text] [Related]
38. [Analysis of the Performance and Mechanism of Phosphorus Removal in Water by Steel Slag]. Luo X; Zhang JB; He L; Yang XJ; Lü PY Huan Jing Ke Xue; 2021 May; 42(5):2324-2333. PubMed ID: 33884802 [TBL] [Abstract][Full Text] [Related]
39. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry. Quijorna N; de Pedro M; Romero M; Andrés A J Environ Manage; 2014 Jan; 132():278-86. PubMed ID: 24321287 [TBL] [Abstract][Full Text] [Related]
40. Phosphorus removal by electric arc furnace steel slag and serpentinite. Drizo A; Forget C; Chapuis RP; Comeau Y Water Res; 2006 May; 40(8):1547-54. PubMed ID: 16564560 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]