These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 29126052)
1. Field assessment of bacterial communities and total trihalomethanes: Implications for drinking water networks. Montoya-Pachongo C; Douterelo I; Noakes C; Camargo-Valero MA; Sleigh A; Escobar-Rivera JC; Torres-Lozada P Sci Total Environ; 2018 Mar; 616-617():345-354. PubMed ID: 29126052 [TBL] [Abstract][Full Text] [Related]
2. Role of drinking water biofilms on residual chlorine decay and trihalomethane formation: An experimental and modeling study. Xu J; Huang C; Shi X; Dong S; Yuan B; Nguyen TH Sci Total Environ; 2018 Nov; 642():516-525. PubMed ID: 29908510 [TBL] [Abstract][Full Text] [Related]
3. A multivariate Bayesian network analysis of water quality factors influencing trihalomethanes formation in drinking water distribution systems. Li RA; McDonald JA; Sathasivan A; Khan SJ Water Res; 2021 Feb; 190():116712. PubMed ID: 33310438 [TBL] [Abstract][Full Text] [Related]
4. DBP-FP change of biofilm in drinking water distribution system induced by sequential UV and chlorine disinfection: Effect of UV dose and influencing mechanism. Zhang T; Li K; Liu X Environ Pollut; 2023 Dec; 338():122716. PubMed ID: 37832779 [TBL] [Abstract][Full Text] [Related]
5. The effect of operational conditions on the disinfection by-products formation potential of exopolymeric substances from biofilms in drinking water. Lemus-Pérez MF; Rodríguez Susa M Sci Total Environ; 2020 Dec; 748():141148. PubMed ID: 32798885 [TBL] [Abstract][Full Text] [Related]
6. Modeling the formation of trihalomethanes in rural and semi-urban drinking water distribution networks of Costa Rica. Kelly-Coto DE; Gamboa-Jiménez A; Mora-Campos D; Salas-Jiménez P; Silva-Narváez B; Jiménez-Antillón J; Pino-Gómez M; Romero-Esquivel LG Environ Sci Pollut Res Int; 2022 May; 29(22):32845-32854. PubMed ID: 35020142 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection. Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261 [TBL] [Abstract][Full Text] [Related]
8. Bacterial community changes in copper and PEX drinking water pipeline biofilms under extra disinfection and magnetic water treatment. Inkinen J; Jayaprakash B; Ahonen M; Pitkänen T; Mäkinen R; Pursiainen A; Santo Domingo JW; Salonen H; Elk M; Keinänen-Toivola MM J Appl Microbiol; 2018 Feb; 124(2):611-624. PubMed ID: 29222953 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the microbiomes of two drinking water distribution systems-with and without residual chloramine disinfection. Waak MB; Hozalski RM; Hallé C; LaPara TM Microbiome; 2019 Jun; 7(1):87. PubMed ID: 31174608 [TBL] [Abstract][Full Text] [Related]
10. Reduction of disinfection by-product precursors in reservoir water by coagulation and ultrafiltration. Wang F; Gao B; Ma D; Yue Q; Li R; Wang Q Environ Sci Pollut Res Int; 2016 Nov; 23(22):22914-22923. PubMed ID: 27578089 [TBL] [Abstract][Full Text] [Related]
11. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems. Liu S; Gunawan C; Barraud N; Rice SA; Harry EJ; Amal R Environ Sci Technol; 2016 Sep; 50(17):8954-76. PubMed ID: 27479445 [TBL] [Abstract][Full Text] [Related]
12. Formation of iodinated trihalomethanes during chlorination of amino acid in waters. Li C; Lin Q; Dong F; Li Y; Luo F; Zhang K Chemosphere; 2019 Feb; 217():355-363. PubMed ID: 30419389 [TBL] [Abstract][Full Text] [Related]
13. Assessing the impact of water treatment on bacterial biofilms in drinking water distribution systems using high-throughput DNA sequencing. Shaw JL; Monis P; Fabris R; Ho L; Braun K; Drikas M; Cooper A Chemosphere; 2014 Dec; 117():185-92. PubMed ID: 25038469 [TBL] [Abstract][Full Text] [Related]
14. Seawater desalination based drinking water: Microbial characterization during distribution with and without residual chlorine. Farhat N; Kim L; Mineta K; Alarawi M; Gojobori T; Saikaly P; Vrouwenvelder J Water Res; 2022 Feb; 210():117975. PubMed ID: 34952456 [TBL] [Abstract][Full Text] [Related]
15. A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection. Rand JL; Hofmann R; Alam MZ; Chauret C; Cantwell R; Andrews RC; Gagnon GA Water Res; 2007 May; 41(9):1939-48. PubMed ID: 17383708 [TBL] [Abstract][Full Text] [Related]
16. Seasonal and spatial evolution of trihalomethanes in a drinking water distribution system according to the treatment process. Domínguez-Tello A; Arias-Borrego A; García-Barrera T; Gómez-Ariza JL Environ Monit Assess; 2015 Nov; 187(11):662. PubMed ID: 26431706 [TBL] [Abstract][Full Text] [Related]
17. [Study for distribution level of disinfection byproducts in drinking water from six cities in China]. Deng Y; Wei J; E X; Wang W; et al Wei Sheng Yan Jiu; 2008 Mar; 37(2):207-10. PubMed ID: 18589610 [TBL] [Abstract][Full Text] [Related]
18. Application of hollow fiber liquid phase microextraction for simultaneous determination of regulated and emerging iodinated trihalomethanes in drinking water. Domínguez-Tello A; Arias-Borrego A; García-Barrera T; Gómez-Ariza JL J Chromatogr A; 2015 Jul; 1402():8-16. PubMed ID: 26026483 [TBL] [Abstract][Full Text] [Related]
19. Influence of bacterial extracellular polymeric substances on the formation of carbonaceous and nitrogenous disinfection byproducts. Wang Z; Kim J; Seo Y Environ Sci Technol; 2012 Oct; 46(20):11361-9. PubMed ID: 22958143 [TBL] [Abstract][Full Text] [Related]
20. Impact of operational conditions on drinking water biofilm dynamics and coliform invasion potential. Waegenaar F; García-Timermans C; Van Landuyt J; De Gusseme B; Boon N Appl Environ Microbiol; 2024 May; 90(5):e0004224. PubMed ID: 38647288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]