BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

914 related articles for article (PubMed ID: 29126180)

  • 1. RepLong: de novo repeat identification using long read sequencing data.
    Guo R; Li YR; He S; Ou-Yang L; Sun Y; Zhu Z
    Bioinformatics; 2018 Apr; 34(7):1099-1107. PubMed ID: 29126180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved approach for reconstructing consensus repeats from short sequence reads.
    Chu C; Pei J; Wu Y
    BMC Genomics; 2018 Aug; 19(Suppl 6):566. PubMed ID: 30367582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the sensitivity of long read overlap detection using grouped short k-mer matches.
    Du N; Chen J; Sun Y
    BMC Genomics; 2019 Apr; 20(Suppl 2):190. PubMed ID: 30967123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FinisherSC: a repeat-aware tool for upgrading de novo assembly using long reads.
    Lam KK; LaButti K; Khalak A; Tse D
    Bioinformatics; 2015 Oct; 31(19):3207-9. PubMed ID: 26040454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RepAHR: an improved approach for de novo repeat identification by assembly of the high-frequency reads.
    Liao X; Gao X; Zhang X; Wu FX; Wang J
    BMC Bioinformatics; 2020 Oct; 21(1):463. PubMed ID: 33076827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ReMILO: reference assisted misassembly detection algorithm using short and long reads.
    Bao E; Song C; Lan L
    Bioinformatics; 2018 Jan; 34(1):24-32. PubMed ID: 28961789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sensitive repeat identification framework based on short and long reads.
    Liao X; Li M; Hu K; Wu FX; Gao X; Wang J
    Nucleic Acids Res; 2021 Sep; 49(17):e100. PubMed ID: 34214175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SMRT sequencing only de novo assembly of the sugar beet (Beta vulgaris) chloroplast genome.
    Stadermann KB; Weisshaar B; Holtgräwe D
    BMC Bioinformatics; 2015 Sep; 16(1):295. PubMed ID: 26377912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LAMSA: fast split read alignment with long approximate matches.
    Liu B; Gao Y; Wang Y
    Bioinformatics; 2017 Jan; 33(2):192-201. PubMed ID: 27667793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-CENTAURI: assessing novel centromeric repeat sequence variation with long read sequencing.
    Sevim V; Bashir A; Chin CS; Miga KH
    Bioinformatics; 2016 Jul; 32(13):1921-1924. PubMed ID: 27153570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of tools for long read RNA-seq splice-aware alignment.
    Križanovic K; Echchiki A; Roux J; Šikic M
    Bioinformatics; 2018 Mar; 34(5):748-754. PubMed ID: 29069314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arioc: GPU-accelerated alignment of short bisulfite-treated reads.
    Wilton R; Li X; Feinberg AP; Szalay AS
    Bioinformatics; 2018 Aug; 34(15):2673-2675. PubMed ID: 29554207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Telescoper: de novo assembly of highly repetitive regions.
    Bresler M; Sheehan S; Chan AH; Song YS
    Bioinformatics; 2012 Sep; 28(18):i311-i317. PubMed ID: 22962446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compression of genomic sequencing reads via hash-based reordering: algorithm and analysis.
    Chandak S; Tatwawadi K; Weissman T
    Bioinformatics; 2018 Feb; 34(4):558-567. PubMed ID: 29444237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ARCS: scaffolding genome drafts with linked reads.
    Yeo S; Coombe L; Warren RL; Chu J; Birol I
    Bioinformatics; 2018 Mar; 34(5):725-731. PubMed ID: 29069293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RecoverY: k-mer-based read classification for Y-chromosome-specific sequencing and assembly.
    Rangavittal S; Harris RS; Cechova M; Tomaszkiewicz M; Chikhi R; Makova KD; Medvedev P
    Bioinformatics; 2018 Apr; 34(7):1125-1131. PubMed ID: 29194476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPU acceleration of Darwin read overlapper for de novo assembly of long DNA reads.
    Ahmed N; Qiu TD; Bertels K; Al-Ars Z
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):388. PubMed ID: 32938392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spectral algorithm for fast de novo layout of uncorrected long nanopore reads.
    Recanati A; Brüls T; d'Aspremont A
    Bioinformatics; 2017 Oct; 33(20):3188-3194. PubMed ID: 28605450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.