These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 29126199)

  • 1. Evolutionary Epigenomics of Retrotransposon-Mediated Methylation Spreading in Rice.
    Choi JY; Purugganan MD
    Mol Biol Evol; 2018 Feb; 35(2):365-382. PubMed ID: 29126199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent retrotransposon insertions are methylated and phylogenetically clustered in japonica rice (Oryza sativa spp. japonica).
    Vonholdt BM; Takuno S; Gaut BS
    Mol Biol Evol; 2012 Oct; 29(10):3193-203. PubMed ID: 22593226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constant conflict between Gypsy LTR retrotransposons and CHH methylation within a stress-adapted mangrove genome.
    Wang Y; Liang W; Tang T
    New Phytol; 2018 Nov; 220(3):922-935. PubMed ID: 29762876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes.
    Kashkush K; Khasdan V
    Genetics; 2007 Dec; 177(4):1975-85. PubMed ID: 18073417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-evolution of plant LTR-retrotransposons and their host genomes.
    Zhao M; Ma J
    Protein Cell; 2013 Jul; 4(7):493-501. PubMed ID: 23794032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transposable element discovery and characterization of LTR-retrotransposon evolutionary lineages in the tropical fruit species Passiflora edulis.
    da Costa ZP; Cauz-Santos LA; Ragagnin GT; Van Sluys MA; Dornelas MC; Berges H; de Mello Varani A; Vieira MLC
    Mol Biol Rep; 2019 Dec; 46(6):6117-6133. PubMed ID: 31549373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?
    Tian Z; Rizzon C; Du J; Zhu L; Bennetzen JL; Jackson SA; Gaut BS; Ma J
    Genome Res; 2009 Dec; 19(12):2221-30. PubMed ID: 19789376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrotranspositions in orthologous regions of closely related grass species.
    Du C; Swigonová Z; Messing J
    BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lineage-specific amplification and epigenetic regulation of LTR-retrotransposons contribute to the structure, evolution, and function of Fabaceae species.
    Yang LL; Zhang XY; Wang LY; Li YG; Li XT; Yang Y; Su Q; Chen N; Zhang YL; Li N; Deng CL; Li SF; Gao WJ
    BMC Genomics; 2023 Jul; 24(1):423. PubMed ID: 37501164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss.
    Vitte C; Panaud O; Quesneville H
    BMC Genomics; 2007 Jul; 8():218. PubMed ID: 17617907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TEnest: automated chronological annotation and visualization of nested plant transposable elements.
    Kronmiller BA; Wise RP
    Plant Physiol; 2008 Jan; 146(1):45-59. PubMed ID: 18032588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome.
    Baucom RS; Estill JC; Leebens-Mack J; Bennetzen JL
    Genome Res; 2009 Feb; 19(2):243-54. PubMed ID: 19029538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LTR retrotransposons reveal recent extensive inter-subspecies nonreciprocal recombination in Asian cultivated rice.
    Wang H; Xu Z; Yu H
    BMC Genomics; 2008 Nov; 9():565. PubMed ID: 19038031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Small RNA-Based Epigenetic Silencing for Purifying Selection on Transposable Elements in Capsella grandiflora.
    Horvath R; Slotte T
    Genome Biol Evol; 2017 Oct; 9(10):2911-2920. PubMed ID: 29036316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LTR-retrotransposons in plants: Engines of evolution.
    Galindo-González L; Mhiri C; Deyholos MK; Grandbastien MA
    Gene; 2017 Aug; 626():14-25. PubMed ID: 28476688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of function mutations in the rice chromomethylase OsCMT3a cause a burst of transposition.
    Cheng C; Tarutani Y; Miyao A; Ito T; Yamazaki M; Sakai H; Fukai E; Hirochika H
    Plant J; 2015 Sep; 83(6):1069-81. PubMed ID: 26243209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic Landscape of Long Terminal Repeat Retrotransposons (LTR-RTs) and Solo LTRs as Shaped by Ectopic Recombination in Chicken and Zebra Finch.
    Ji Y; DeWoody JA
    J Mol Evol; 2016 Jun; 82(6):251-63. PubMed ID: 27154235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome
    Zhang QJ; Gao LZ
    G3 (Bethesda); 2017 Jun; 7(6):1875-1885. PubMed ID: 28413161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
    Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM
    Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.