These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29126218)

  • 41. Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering.
    Yu DJ; Hu J; Yang J; Shen HB; Tang J; Yang JY
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):994-1008. PubMed ID: 24334392
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction of active site cleft using support vector machines.
    Sonavane S; Chakrabarti P
    J Chem Inf Model; 2010 Dec; 50(12):2266-73. PubMed ID: 21080689
    [TBL] [Abstract][Full Text] [Related]  

  • 43. G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures.
    Lee HS; Im W
    Methods Mol Biol; 2017; 1611():97-108. PubMed ID: 28451974
    [TBL] [Abstract][Full Text] [Related]  

  • 44. LRFragLib: an effective algorithm to identify fragments for de novo protein structure prediction.
    Wang T; Yang Y; Zhou Y; Gong H
    Bioinformatics; 2017 Mar; 33(5):677-684. PubMed ID: 27797773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Machine learning accelerates MD-based binding pose prediction between ligands and proteins.
    Terayama K; Iwata H; Araki M; Okuno Y; Tsuda K
    Bioinformatics; 2018 Mar; 34(5):770-778. PubMed ID: 29040432
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The new protein topology graph library web server.
    Schäfer T; Scheck A; Bruneß D; May P; Koch I
    Bioinformatics; 2016 Feb; 32(3):474-6. PubMed ID: 26446136
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ASSIST: a fast versatile local structural comparison tool.
    Caprari S; Toti D; Viet Hung L; Di Stefano M; Polticelli F
    Bioinformatics; 2014 Apr; 30(7):1022-4. PubMed ID: 24243934
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ProBiS tools (algorithm, database, and web servers) for predicting and modeling of biologically interesting proteins.
    Konc J; Janežič D
    Prog Biophys Mol Biol; 2017 Sep; 128():24-32. PubMed ID: 28212856
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predicting functional sites with an automated algorithm suitable for heterogeneous datasets.
    La D; Livesay DR
    BMC Bioinformatics; 2005 May; 6():116. PubMed ID: 15890082
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction.
    Zhang Z; Li Y; Lin B; Schroeder M; Huang B
    Bioinformatics; 2011 Aug; 27(15):2083-8. PubMed ID: 21636590
    [TBL] [Abstract][Full Text] [Related]  

  • 51. LigDig: a web server for querying ligand-protein interactions.
    Fuller JC; Martinez M; Henrich S; Stank A; Richter S; Wade RC
    Bioinformatics; 2015 Apr; 31(7):1147-9. PubMed ID: 25433696
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational Design of Ligand Binding Proteins.
    Tinberg CE; Khare SD
    Methods Mol Biol; 2017; 1529():363-373. PubMed ID: 27914062
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Connectivity and binding-site recognition: applications relevant to drug design.
    Illingworth CJ; Scott PD; Parkes KE; Snell CR; Campbell MP; Reynolds CA
    J Comput Chem; 2010 Nov; 31(15):2677-88. PubMed ID: 20839295
    [TBL] [Abstract][Full Text] [Related]  

  • 54. AQUA-DUCT: a ligands tracking tool.
    Magdziarz T; Mitusinska K; Goldowska S; Pluciennik A; Stolarczyk M; Lugowska M; Góra A
    Bioinformatics; 2017 Jul; 33(13):2045-2046. PubMed ID: 28334160
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RBind: computational network method to predict RNA binding sites.
    Wang K; Jian Y; Wang H; Zeng C; Zhao Y
    Bioinformatics; 2018 Sep; 34(18):3131-3136. PubMed ID: 29718097
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein-binding site prediction based on three-dimensional protein modeling.
    Oh M; Joo K; Lee J
    Proteins; 2009; 77 Suppl 9():152-6. PubMed ID: 19768678
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pocket-space maps to identify novel binding-site conformations in proteins.
    Craig IR; Pfleger C; Gohlke H; Essex JW; Spiegel K
    J Chem Inf Model; 2011 Oct; 51(10):2666-79. PubMed ID: 21910474
    [TBL] [Abstract][Full Text] [Related]  

  • 59. eF-seek: prediction of the functional sites of proteins by searching for similar electrostatic potential and molecular surface shape.
    Kinoshita K; Murakami Y; Nakamura H
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W398-402. PubMed ID: 17567616
    [TBL] [Abstract][Full Text] [Related]  

  • 60. HEMEsPred: Structure-Based Ligand-Specific Heme Binding Residues Prediction by Using Fast-Adaptive Ensemble Learning Scheme.
    Zhang J; Chai H; Gao B; Yang G; Ma Z
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):147-156. PubMed ID: 28029626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.