These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 29126411)
1. Thermal conditions during early life influence seasonal maternal strategies in the three-spined stickleback. Kim SY; Metcalfe NB; da Silva A; Velando A BMC Ecol; 2017 Nov; 17(1):34. PubMed ID: 29126411 [TBL] [Abstract][Full Text] [Related]
2. Bet hedging in a warming ocean: predictability of maternal environment shapes offspring size variation in marine sticklebacks. Shama LN Glob Chang Biol; 2015 Dec; 21(12):4387-400. PubMed ID: 26183221 [TBL] [Abstract][Full Text] [Related]
3. Timing of reproduction modifies transgenerational effects of chronic exposure to stressors in an annual vertebrate. Magierecka A; Aristeidou A; Papaevripidou M; Gibson JK; Sloman KA; Metcalfe NB Proc Biol Sci; 2022 Oct; 289(1984):20221462. PubMed ID: 36476008 [TBL] [Abstract][Full Text] [Related]
4. Within-generation and transgenerational plasticity of mate choice in oceanic stickleback under climate change. Fuxjäger L; Wanzenböck S; Ringler E; Wegner KM; Ahnelt H; Shama LNS Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180183. PubMed ID: 30966960 [TBL] [Abstract][Full Text] [Related]
5. Carry-over effects of early thermal conditions on somatic and germline oxidative damages are mediated by compensatory growth in sticklebacks. Kim SY; Noguera JC; Velando A J Anim Ecol; 2019 Mar; 88(3):473-483. PubMed ID: 30548846 [TBL] [Abstract][Full Text] [Related]
6. No evidence for adjustment of maternal investment under alternative mate availability regimes. Weigel EG; Tinghitella RM; Boughman JW J Fish Biol; 2016 Feb; 88(2):508-22. PubMed ID: 26508506 [TBL] [Abstract][Full Text] [Related]
7. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs. J Vis Exp; 2023 May; (195):. PubMed ID: 37235796 [TBL] [Abstract][Full Text] [Related]
8. Environment-induced changes in reproductive strategies and their transgenerational effects in the three-spined stickleback. Álvarez-Quintero N; Velando A; Noguera JC; Kim SY Ecol Evol; 2021 Jan; 11(2):771-783. PubMed ID: 33520165 [TBL] [Abstract][Full Text] [Related]
9. The pattern of early growth trajectories affects adult breeding performance. Lee WS; Monaghan P; Metcalfe NB Ecology; 2012 Apr; 93(4):902-12. PubMed ID: 22690640 [TBL] [Abstract][Full Text] [Related]
10. A benign juvenile environment reduces the strength of antagonistic pleiotropy and genetic variation in the rate of senescence. Kim SY; Metcalfe NB; Velando A J Anim Ecol; 2016 May; 85(3):705-14. PubMed ID: 26559495 [TBL] [Abstract][Full Text] [Related]
11. Environmental concentrations of an androgenic progestin disrupts the seasonal breeding cycle in male three-spined stickleback (Gasterosteus aculeatus). Svensson J; Fick J; Brandt I; Brunström B Aquat Toxicol; 2014 Feb; 147():84-91. PubMed ID: 24378470 [TBL] [Abstract][Full Text] [Related]
12. Effect of spawning number and ration on reproductive performance of the batch-spawning three-spined stickleback Gasterosteus aculeatus. Wootton RJ; Fletcher DA J Fish Biol; 2009 Aug; 75(3):618-29. PubMed ID: 20738560 [TBL] [Abstract][Full Text] [Related]
13. Early growth trajectories affect sexual responsiveness. Lee WS; Metcalfe NB; Réale D; Peres-Neto PR Proc Biol Sci; 2014 Feb; 281(1777):20132899. PubMed ID: 24403342 [TBL] [Abstract][Full Text] [Related]
14. INTERACTIVE EFFECTS OF OFFSPRING SIZE AND TIMING OF REPRODUCTION ON OFFSPRING REPRODUCTION: EXPERIMENTAL, MATERNAL, AND QUANTITATIVE GENETIC ASPECTS. Sinervo B; Doughty P Evolution; 1996 Jun; 50(3):1314-1327. PubMed ID: 28565283 [TBL] [Abstract][Full Text] [Related]
15. Maternal investment in reproduction and its consequences in leatherback turtles. Wallace BP; Sotherland PR; Tomillo PS; Reina RD; Spotila JR; Paladino FV Oecologia; 2007 May; 152(1):37-47. PubMed ID: 17256173 [TBL] [Abstract][Full Text] [Related]
16. Experimental demonstration of the growth rate--lifespan trade-off. Lee WS; Monaghan P; Metcalfe NB Proc Biol Sci; 2013 Feb; 280(1752):20122370. PubMed ID: 23235704 [TBL] [Abstract][Full Text] [Related]
17. Intergenerational effects of ocean temperature variation: Early life benefits are short-lived in threespine stickleback. Spence-Jones HC; Pein CM; Shama LNS PLoS One; 2024; 19(8):e0307030. PubMed ID: 39093894 [TBL] [Abstract][Full Text] [Related]
18. Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations. Shama LN; Wegner KM J Evol Biol; 2014 Nov; 27(11):2297-307. PubMed ID: 25264208 [TBL] [Abstract][Full Text] [Related]
19. Climate change alters the reproductive phenology and investment of a lacustrine fish, the three-spine stickleback. Hovel RA; Carlson SM; Quinn TP Glob Chang Biol; 2017 Jun; 23(6):2308-2320. PubMed ID: 27901297 [TBL] [Abstract][Full Text] [Related]
20. Adaptive seasonal shift towards investment in fewer, larger offspring: Evidence from field and laboratory studies. Hall JM; Mitchell TS; Thawley CJ; Stroud JT; Warner DA J Anim Ecol; 2020 May; 89(5):1242-1253. PubMed ID: 31994721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]