These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29126571)

  • 1. Potential Applications of the Escherichia coli Heat Shock Response in Synthetic Biology.
    Rodrigues JL; Rodrigues LR
    Trends Biotechnol; 2018 Feb; 36(2):186-198. PubMed ID: 29126571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Circuits To Detect Nanomaterial Triggered Toxicity through Engineered Heat Shock Response Mechanism.
    Saltepe B; Bozkurt EU; Hacıosmanoğlu N; Şeker UÖŞ
    ACS Synth Biol; 2019 Oct; 8(10):2404-2417. PubMed ID: 31536326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoter Screening from Bacillus subtilis in Various Conditions Hunting for Synthetic Biology and Industrial Applications.
    Song Y; Nikoloff JM; Fu G; Chen J; Li Q; Xie N; Zheng P; Sun J; Zhang D
    PLoS One; 2016; 11(7):e0158447. PubMed ID: 27380260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Heat shock inhibits the induced expression of the SOS genes and SoxRS regulons in Escherichia coli].
    Vasil'eva SV; Makhova EV
    Genetika; 2003 Aug; 39(8):1033-8. PubMed ID: 14515458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription of the ibpB heat-shock gene is under control of sigma(32)- and sigma(54)-promoters, a third regulon of heat-shock response.
    Kuczyńska-Wisńik D; Laskowska E; Taylor A
    Biochem Biophys Res Commun; 2001 Jun; 284(1):57-64. PubMed ID: 11374870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response.
    Guisbert E; Yura T; Rhodius VA; Gross CA
    Microbiol Mol Biol Rev; 2008 Sep; 72(3):545-54. PubMed ID: 18772288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of Synthetic Promoters by Assembling the Sigma Factor Binding -35 and -10 Boxes.
    Wang Y; Liu Q; Weng H; Shi Y; Chen J; Du G; Kang Z
    Biotechnol J; 2019 Jan; 14(1):e1800298. PubMed ID: 30457214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of Escherichi coli to elevated temperatures involves a change in stability of heat shock gene transcripts.
    Shenhar Y; Rasouly A; Biran D; Ron EZ
    Environ Microbiol; 2009 Dec; 11(12):2989-97. PubMed ID: 19624711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-transcriptional control of the cyanobacterial hspA heat-shock induction.
    Kojima K; Nakamoto H
    Biochem Biophys Res Commun; 2005 Jun; 331(2):583-8. PubMed ID: 15850800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress.
    Nonaka G; Blankschien M; Herman C; Gross CA; Rhodius VA
    Genes Dev; 2006 Jul; 20(13):1776-89. PubMed ID: 16818608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bile salt activation of stress response promoters in Escherichia coli.
    Bernstein C; Bernstein H; Payne CM; Beard SE; Schneider J
    Curr Microbiol; 1999 Aug; 39(2):68-72. PubMed ID: 10398829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors.
    Miché L; Belkin S; Rozen R; Balandreau J
    Environ Microbiol; 2003 May; 5(5):403-11. PubMed ID: 12713466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Xanthomonas campestris pv. campestris heat shock protein A (HspA), which possesses an intrinsic ability to reactivate inactivated proteins.
    Lin CH; Lee CN; Lin JW; Tsai WJ; Wang SW; Weng SF; Tseng YH
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):699-709. PubMed ID: 20668846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The heat shock response of E. coli is regulated by changes in the concentration of sigma 32.
    Straus DB; Walter WA; Gross CA
    Nature; 1987 Sep 24-30; 329(6137):348-51. PubMed ID: 3306410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of membrane lipid fluidity by molecular thermosensors.
    Mansilla MC; Cybulski LE; Albanesi D; de Mendoza D
    J Bacteriol; 2004 Oct; 186(20):6681-8. PubMed ID: 15466018
    [No Abstract]   [Full Text] [Related]  

  • 16. De novo design of heat-repressible RNA thermosensors in E. coli.
    Hoynes-O'Connor A; Hinman K; Kirchner L; Moon TS
    Nucleic Acids Res; 2015 Jul; 43(12):6166-79. PubMed ID: 25979263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Endogenous and Reduced Promoters for Oxygen-Limited Processes Using Escherichia coli.
    Lara AR; Jaén KE; Sigala JC; Mühlmann M; Regestein L; Büchs J
    ACS Synth Biol; 2017 Feb; 6(2):344-356. PubMed ID: 27715021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global transcriptome response of recombinant Escherichia coli to heat-shock and dual heat-shock recombinant protein induction.
    Harcum SW; Haddadin FT
    J Ind Microbiol Biotechnol; 2006 Oct; 33(10):801-14. PubMed ID: 16680459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The role of antioxidant systems in response of bacteria Escherichia coli to heat shock].
    Smirnova GV; Zakirova ON; Oktiabr'skiĭ ON
    Mikrobiologiia; 2001; 70(5):595-601. PubMed ID: 11763776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An online monitoring system based on a synthetic sigma32-dependent tandem promoter for visualization of insoluble proteins in the cytoplasm of Escherichia coli.
    Kraft M; Knüpfer U; Wenderoth R; Pietschmann P; Hock B; Horn U
    Appl Microbiol Biotechnol; 2007 May; 75(2):397-406. PubMed ID: 17221192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.