BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29126849)

  • 1. Introduction of 2-O-benzyl abasic nucleosides to the 3'-overhang regions of siRNAs greatly improves nuclease resistance.
    Nagaya Y; Kitamura Y; Shibata A; Ikeda M; Akao Y; Kitade Y
    Bioorg Med Chem Lett; 2017 Dec; 27(24):5454-5456. PubMed ID: 29126849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and biological properties of chemically modified siRNAs bearing 1-deoxy-D-ribofuranose in their 3'-overhang region.
    Taniho K; Nakashima R; Kandeel M; Kitamura Y; Kitade Y
    Bioorg Med Chem Lett; 2012 Apr; 22(7):2518-21. PubMed ID: 22377516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of nuclease-resistant siRNAs possessing universal overhangs.
    Ueno Y; Watanabe Y; Shibata A; Yoshikawa K; Takano T; Kohara M; Kitade Y
    Bioorg Med Chem; 2009 Mar; 17(5):1974-81. PubMed ID: 19200743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of an acyclic alkynyl nucleoside analog into siRNA improves silencing activity and nuclease resistance.
    Ogata A; Ueno Y
    Bioorg Med Chem Lett; 2015 Jun; 25(12):2574-8. PubMed ID: 25956414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re-Engineering RNA Molecules into Therapeutic Agents.
    Egli M; Manoharan M
    Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the Binding Interactions between Chemically Modified siRNAs and Human Argonaute 2 Using Microsecond Molecular Dynamics Simulations.
    Harikrishna S; Pradeepkumar PI
    J Chem Inf Model; 2017 Apr; 57(4):883-896. PubMed ID: 28287733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guide Strand 3'-End Modifications Regulate siRNA Specificity.
    Valenzuela RA; Onizuka K; Ball-Jones AA; Hu T; Suter SR; Beal PA
    Chembiochem; 2016 Dec; 17(24):2340-2345. PubMed ID: 27731539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 5' binding MID domain of human Argonaute2 tolerates chemically modified nucleotide analogues.
    Deleavey GF; Frank F; Hassler M; Wisnovsky S; Nagar B; Damha MJ
    Nucleic Acid Ther; 2013 Feb; 23(1):81-7. PubMed ID: 23289589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of small interfering RNAs containing acetal-type nucleoside analogs at their 3'-ends and analysis of their silencing activity and their ability to bind to the Argonaute2 PAZ domain.
    Inada N; Nakamoto K; Yokogawa T; Ueno Y
    Eur J Med Chem; 2015 Oct; 103():460-72. PubMed ID: 26397394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Practical and Reliable Synthesis of 1,2-Dideoxy-d-ribofuranose and its Application in RNAi Studies.
    Nagaya Y; Kitamura Y; Nakashima R; Shibata A; Ikeda M; Kitade Y
    Nucleosides Nucleotides Nucleic Acids; 2016; 35(2):64-75. PubMed ID: 26822569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amide-Modified RNA: Using Protein Backbone to Modulate Function of Short Interfering RNAs.
    Kotikam V; Rozners E
    Acc Chem Res; 2020 Sep; 53(9):1782-1790. PubMed ID: 32658452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of nuclease-resistant siRNAs possessing benzene-phosphate backbones in their 3'-overhang regions.
    Ueno Y; Inoue T; Yoshida M; Yoshikawa K; Shibata A; Kitamura Y; Kitade Y
    Bioorg Med Chem Lett; 2008 Oct; 18(19):5194-6. PubMed ID: 18783944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing.
    Bartlett DW; Davis ME
    Biotechnol Bioeng; 2007 Jul; 97(4):909-21. PubMed ID: 17154307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNAi activity of siRNAs modified with 2'-aminoalkyl-substituted fluorinated nucleobases.
    Haas J; Mueller-Kuller T; Klein S; Engels JW
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(6-7):865-8. PubMed ID: 18066915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and binding study of modified siRNAs with the Argonaute 2 PAZ domain by NMR spectroscopy.
    Maiti M; Nauwelaerts K; Lescrinier E; Herdewijn P
    Chemistry; 2011 Feb; 17(5):1519-28. PubMed ID: 21268154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to Computationally Stack the Deck for Hit-to-Lead Generation: In Silico Molecular Interaction Energy Profiling for de Novo siRNA Guide Strand Surrogate Selection.
    Greenidge PA; Blommers MJJ; Priestle JP; Hunziker J
    J Chem Inf Model; 2019 May; 59(5):1897-1908. PubMed ID: 31021613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Sugar 2',4'-Modifications on Gene Silencing Activity of siRNA Duplexes.
    Malek-Adamian E; Fakhoury J; Arnold AE; Martínez-Montero S; Shoichet MS; Damha MJ
    Nucleic Acid Ther; 2019 Aug; 29(4):187-194. PubMed ID: 31084536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and properties of modified siRNA having amide-linked oligoribonucleosides at their 3' overhang regions.
    Iwase R; Miyao H; Toyama T; Nishimori K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):175-6. PubMed ID: 17150874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA interference in mammalian cells by siRNAs modified with morpholino nucleoside analogues.
    Zhang N; Tan C; Cai P; Zhang P; Zhao Y; Jiang Y
    Bioorg Med Chem; 2009 Mar; 17(6):2441-6. PubMed ID: 19233658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of modified siRNA bearing C-5 polyamine-substituted pyrimidine nucleoside in their 3'-overhang regions and its RNAi activity.
    Masud MM; Masuda T; Inoue Y; Kuwahara M; Sawai H; Ozaki H
    Bioorg Med Chem Lett; 2011 Jan; 21(2):715-7. PubMed ID: 21190853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.