These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29127043)

  • 21. Quantitative phase microscopy with off-axis optical coherence tomography.
    Rinehart MT; Jaedicke V; Wax A
    Opt Lett; 2014 Apr; 39(7):1996-9. PubMed ID: 24686658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of coated optical fibers by Fourier-domain optical coherence tomography.
    Jasapara J; Wielandy S
    Opt Lett; 2005 May; 30(9):1018-20. PubMed ID: 15906989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging and quantifying Brownian motion of micro- and nanoparticles using phase-resolved Doppler variance optical coherence tomography.
    Kim CS; Qi W; Zhang J; Kwon YJ; Chen Z
    J Biomed Opt; 2013 Mar; 18(3):030504. PubMed ID: 23515863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye.
    Jeong K; Peng L; Turek JJ; Melloch MR; Nolte DD
    Appl Opt; 2005 Apr; 44(10):1798-805. PubMed ID: 15813515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography.
    Liu B; Harman M; Giattina S; Stamper DL; Demakis C; Chilek M; Raby S; Brezinski ME
    Appl Opt; 2006 Jun; 45(18):4464-79. PubMed ID: 16778957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of fixed point FFT for Fourier domain optical coherence tomography systems.
    Ali M; Parlapalli R; Magee DP; Dasgupta U
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4085-8. PubMed ID: 19965018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.
    Xie T; Guo S; Zhang J; Chen Z; Peavy GM
    Lasers Surg Med; 2006 Oct; 38(9):852-65. PubMed ID: 16998913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Matrix approach to quantitative refractive index analysis by Fourier domain optical coherence tomography.
    Tomlins PH; Wang RK
    J Opt Soc Am A Opt Image Sci Vis; 2006 Aug; 23(8):1897-907. PubMed ID: 16835647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extended focus depth for Fourier domain optical coherence microscopy.
    Leitgeb RA; Villiger M; Bachmann AH; Steinmann L; Lasser T
    Opt Lett; 2006 Aug; 31(16):2450-2. PubMed ID: 16880852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram.
    Vakhtin AB; Peterson KA; Kane DJ
    Opt Lett; 2006 May; 31(9):1271-3. PubMed ID: 16642082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry.
    Pyhtila JW; Ma H; Simnick AJ; Chilkoti A; Wax A
    J Biomed Opt; 2006; 11(3):34022. PubMed ID: 16822071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subcellular imaging of epithelium with time-lapse optical coherence tomography.
    Pan YT; Wu ZL; Yuan ZJ; Wang ZG; Du CW
    J Biomed Opt; 2007; 12(5):050504. PubMed ID: 17994860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nano-sensitive optical coherence tomography.
    Alexandrov SA; Subhash HM; Zam A; Leahy M
    Nanoscale; 2014 Apr; 6(7):3545-9. PubMed ID: 24595392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical coherence tomography by using frequency measurements in wavelength domain.
    Seck HL; Zhang Y; Soh YC
    Opt Express; 2011 Jan; 19(2):1324-34. PubMed ID: 21263673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography.
    Guo S; Zhang J; Wang L; Nelson JS; Chen Z
    Opt Lett; 2004 Sep; 29(17):2025-7. PubMed ID: 15455768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dispersion-based optical coherence tomography OCT measurement of mixture concentrations.
    Bagherzadeh SM; Grajciar B; Hitzenberger CK; Pircher M; Fercher AF
    Opt Lett; 2007 Oct; 32(20):2924-6. PubMed ID: 17938654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography.
    Ai J; Wang LV
    Opt Lett; 2005 Nov; 30(21):2939-41. PubMed ID: 16279475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear nano-morphology markers of histologically normal cells detect the "field effect" of breast cancer.
    Bista RK; Wang P; Bhargava R; Uttam S; Hartman DJ; Brand RE; Liu Y
    Breast Cancer Res Treat; 2012 Aug; 135(1):115-24. PubMed ID: 22706633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator.
    Zhang J; Nelson JS; Chen Z
    Opt Lett; 2005 Jan; 30(2):147-9. PubMed ID: 15675695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence and compensation of autocorrelation terms in depth-resolved spectroscopic Fourier-domain optical coherence tomography.
    Steiner P; Meier C; Koch VM
    Appl Opt; 2010 Dec; 49(36):6917-23. PubMed ID: 21173826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.