BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 29127044)

  • 1. Modeling the sub-diffraction focusing phenomenon of light propagation through scattering medium.
    Tseng SH
    Methods; 2018 Mar; 136():75-80. PubMed ID: 29127044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-D PSTD Simulation of focusing monochromatic light through a macroscopic scattering medium via optical phase conjugation.
    Tseng SH
    Biomed Opt Express; 2015 Mar; 6(3):815-26. PubMed ID: 25798306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2-D PSTD Simulation of the time-reversed ultrasound-encoded deep-tissue imaging technique.
    Tseng SH; Ting WL; Wang SJ
    Biomed Opt Express; 2014 Mar; 5(3):882-94. PubMed ID: 24688821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium.
    Tseng SH; Greene JH; Taflove A; Maitland D; Backman V; Walsh JT
    Opt Lett; 2004 Jun; 29(12):1393-5. PubMed ID: 15233446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating the scanning of a focused beam through scattering media using a numerical solution of Maxwell's equations.
    Elmaklizi A; Schäfer J; Kienle A
    J Biomed Opt; 2014 Jul; 19(7):071404. PubMed ID: 24395650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PSTD Simulation of optical phase conjugation of light propagating long optical paths.
    Tseng SH
    Opt Express; 2009 Mar; 17(7):5490-5. PubMed ID: 19333316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell's equations in two dimensions.
    Elmaklizi A; Reitzle D; Brandes A; Kienle A
    J Biomed Opt; 2015 Jun; 20(6):065007. PubMed ID: 26112366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element beam propagation method for simulation of liquid crystal devices.
    Vanbrabant PJ; Beeckman J; Neyts K; James R; Fernandez FA
    Opt Express; 2009 Jun; 17(13):10895-909. PubMed ID: 19550490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of enhanced backscattering of light by numerically solving Maxwell's equations without heuristic approximations.
    Tseng S; Kim Y; Taflove A; Maitland D; Backman V; Walsh J
    Opt Express; 2005 May; 13(10):3666-72. PubMed ID: 19495273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-PSTD simulation and polarization analysis of a light pulse transmitted through a scattering medium.
    Devaux F; Lantz E
    Opt Express; 2013 Oct; 21(21):24969-84. PubMed ID: 24150340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplified total internal reflection: theory, analysis, and demonstration of existence via FDTD.
    Willis KJ; Schneider JB; Hagness SC
    Opt Express; 2008 Feb; 16(3):1903-14. PubMed ID: 18542269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-D PSTD Simulation of optical phase conjugation for turbidity suppression.
    Tseng SH; Yang C
    Opt Express; 2007 Nov; 15(24):16005-16. PubMed ID: 19550887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium: addendum.
    Tseng SH; Greene JH; Taflove A; Maitland D; Backman V; Walsh JT
    Opt Lett; 2005 Jan; 30(1):56-7. PubMed ID: 15648636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A k-space method for large-scale models of wave propagation in tissue.
    Mast TD; Souriau LP; Liu DL; Tabei M; Nachman AI; Waag RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):341-54. PubMed ID: 11370348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles.
    Chen G; Yang P; Kattawar GW
    J Opt Soc Am A Opt Image Sci Vis; 2008 Mar; 25(3):785-90. PubMed ID: 18311250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple scattering effects on optical characterization of biological tissue using spectroscopic scattering parameters.
    Yip W; Li X
    Opt Lett; 2008 Dec; 33(23):2877-9. PubMed ID: 19037458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-accelerating self-trapped nonlinear beams of Maxwell's equations.
    Kaminer I; Nemirovsky J; Segev M
    Opt Express; 2012 Aug; 20(17):18827-35. PubMed ID: 23038522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid computation of the amplitude and phase of tightly focused optical fields distorted by scattering particles.
    Ranasinghesagara JC; Hayakawa CK; Davis MA; Dunn AK; Potma EO; Venugopalan V
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1520-30. PubMed ID: 25121440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of shear wave propagation in a soft medium using a pseudospectral time domain method.
    Bastard C; Remeniéras JP; Callé S; Sandrin L
    J Acoust Soc Am; 2009 Oct; 126(4):2108-16. PubMed ID: 19813820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical modeling of light propagation in a hexagonal array of dielectric cylinders.
    Fischer L; Zvyagin A; Plakhotnik T; Vorobyev M
    J Opt Soc Am A Opt Image Sci Vis; 2010 Apr; 27(4):865-72. PubMed ID: 20360828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.