These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29127320)

  • 1. Crystalline Soda Can Metamaterial exhibiting Graphene-like Dispersion at subwavelength scale.
    Yves S; Lemoult F; Fink M; Lerosey G
    Sci Rep; 2017 Nov; 7(1):15359. PubMed ID: 29127320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring Dirac Cones in a Subwavelength Metamaterial.
    Yves S; Berthelot T; Fink M; Lerosey G; Lemoult F
    Phys Rev Lett; 2018 Dec; 121(26):267601. PubMed ID: 30636133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves.
    Torrent D; Sánchez-Dehesa J
    Phys Rev Lett; 2012 Apr; 108(17):174301. PubMed ID: 22680870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subwavelength Acoustic Valley-Hall Topological Insulators Using Soda Cans Honeycomb Lattices.
    Zhang Z; Gu Y; Long H; Cheng Y; Liu X; Christensen J
    Research (Wash D C); 2019; 2019():5385763. PubMed ID: 31549068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dirac Hierarchy in Acoustic Topological Insulators.
    Zheng LY; Christensen J
    Phys Rev Lett; 2021 Oct; 127(15):156401. PubMed ID: 34678007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new Dirac cone material: a graphene-like Be
    Wang B; Yuan S; Li Y; Shi L; Wang J
    Nanoscale; 2017 May; 9(17):5577-5582. PubMed ID: 28406258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces.
    Mann CR; Sturges TJ; Weick G; Barnes WL; Mariani E
    Nat Commun; 2018 Jun; 9(1):2194. PubMed ID: 29875384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double Dirac cones in triangular-lattice metamaterials.
    Sakoda K
    Opt Express; 2012 Apr; 20(9):9925-39. PubMed ID: 22535085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.
    Kaina N; Lemoult F; Fink M; Lerosey G
    Nature; 2015 Sep; 525(7567):77-81. PubMed ID: 26333466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dirac point movement and topological phase transition in patterned graphene.
    Dvorak M; Wu Z
    Nanoscale; 2015 Feb; 7(8):3645-50. PubMed ID: 25636026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Anisotropic Dirac Cone Material: A B
    Zhao Y; Li X; Liu J; Zhang C; Wang Q
    J Phys Chem Lett; 2018 Apr; 9(7):1815-1820. PubMed ID: 29575891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guided modes near the Dirac point in negative-zero-positive index metamaterial waveguide.
    Shen M; Ruan LX; Chen X
    Opt Express; 2010 Jun; 18(12):12779-87. PubMed ID: 20588406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulse Reshaping in Double-zero-index Photonic Crystals with Dirac-like-cone Dispersion.
    Xu T; Zhu D; Hang ZH
    Sci Rep; 2020 May; 10(1):8416. PubMed ID: 32439891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tight-binding modeling and low-energy behavior of the semi-Dirac point.
    Banerjee S; Singh RR; Pardo V; Pickett WE
    Phys Rev Lett; 2009 Jul; 103(1):016402. PubMed ID: 19659161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic interaction between nitrogen atoms in doped graphene.
    Tison Y; Lagoute J; Repain V; Chacon C; Girard Y; Rousset S; Joucken F; Sharma D; Henrard L; Amara H; Ghedjatti A; Ducastelle F
    ACS Nano; 2015 Jan; 9(1):670-8. PubMed ID: 25558891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental characterisation of the bound acoustic surface modes supported by honeycomb and hexagonal hole arrays.
    Starkey TA; Kyrimi V; Ward GP; Sambles JR; Hibbins AP
    Sci Rep; 2019 Oct; 9(1):15773. PubMed ID: 31673035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two dimensional Dirac carbon allotropes from graphene.
    Xu LC; Wang RZ; Miao MS; Wei XL; Chen YP; Yan H; Lau WM; Liu LM; Ma YM
    Nanoscale; 2014 Jan; 6(2):1113-8. PubMed ID: 24296630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Transmission and Deterministic Interface states in Double-zero-index Acoustic Metamaterials.
    Zhao W; Yang Y; Tao Z; Hang ZH
    Sci Rep; 2018 Apr; 8(1):6311. PubMed ID: 29679074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dirac-like plasmons in honeycomb lattices of metallic nanoparticles.
    Weick G; Woollacott C; Barnes WL; Hess O; Mariani E
    Phys Rev Lett; 2013 Mar; 110(10):106801. PubMed ID: 23521276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system.
    Feng Y; Liu D; Feng B; Liu X; Zhao L; Xie Z; Liu Y; Liang A; Hu C; Hu Y; He S; Liu G; Zhang J; Chen C; Xu Z; Chen L; Wu K; Liu YT; Lin H; Huang ZQ; Hsu CH; Chuang FC; Bansil A; Zhou XJ
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14656-14661. PubMed ID: 27930314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.