These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29127346)

  • 1. Microelectrode implantation in motor cortex causes fine motor deficit: Implications on potential considerations to Brain Computer Interfacing and Human Augmentation.
    Goss-Varley M; Dona KR; McMahon JA; Shoffstall AJ; Ereifej ES; Lindner SC; Capadona JR
    Sci Rep; 2017 Nov; 7(1):15254. PubMed ID: 29127346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rodent Behavioral Testing to Assess Functional Deficits Caused by Microelectrode Implantation in the Rat Motor Cortex.
    Goss-Varley M; Shoffstall AJ; Dona KR; McMahon JA; Lindner SC; Ereifej ES; Capadona JR
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30176008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial transcriptomics at the brain-electrode interface in rat motor cortex and the relationship to recording quality.
    Whitsitt Q; Saxena A; Patel B; Evans BM; Hunt B; Purcell EK
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38885679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes.
    Hermann JK; Capadona JR
    Crit Rev Biomed Eng; 2018; 46(4):341-367. PubMed ID: 30806249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of genes involved in the acute innate immune response to intracortical microelectrodes.
    Bedell HW; Schaub NJ; Capadona JR; Ereifej ES
    Acta Biomater; 2020 Jan; 102():205-219. PubMed ID: 31733330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical stimulation mapping using epidurally implanted thin-film microelectrode arrays.
    Molina-Luna K; Buitrago MM; Hertler B; Schubring M; Haiss F; Nisch W; Schulz JB; Luft AR
    J Neurosci Methods; 2007 Mar; 161(1):118-25. PubMed ID: 17178423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex.
    Winslow BD; Christensen MB; Yang WK; Solzbacher F; Tresco PA
    Biomaterials; 2010 Dec; 31(35):9163-72. PubMed ID: 20561678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate.
    Degenhart AD; Eles J; Dum R; Mischel JL; Smalianchuk I; Endler B; Ashmore RC; Tyler-Kabara EC; Hatsopoulos NG; Wang W; Batista AP; Cui XT
    J Neural Eng; 2016 Aug; 13(4):046019. PubMed ID: 27351722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of chronic daily anti-oxidant administration on the inflammatory response to intracortical microelectrodes.
    Potter-Baker KA; Stewart WG; Tomaszewski WH; Wong CT; Meador WD; Ziats NP; Capadona JR
    J Neural Eng; 2015 Aug; 12(4):046002. PubMed ID: 26015427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic intracortical microelectrode arrays induce non-uniform, depth-related tissue responses.
    Woolley AJ; Desai HA; Otto KJ
    J Neural Eng; 2013 Apr; 10(2):026007. PubMed ID: 23428842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prenatal alcohol exposure reduces the size of the forelimb representation in motor cortex in rat: an intracortical microstimulation (ICMS) mapping study.
    Xie N; Yang Q; Chappell TD; Li CX; Waters RS
    Alcohol; 2010 Mar; 44(2):185-94. PubMed ID: 20083368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices.
    Schendel AA; Thongpang S; Brodnick SK; Richner TJ; Lindevig BD; Krugner-Higby L; Williams JC
    J Neurosci Methods; 2013 Aug; 218(1):121-30. PubMed ID: 23769960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes.
    Potter KA; Buck AC; Self WK; Callanan ME; Sunil S; Capadona JR
    Biomaterials; 2013 Sep; 34(29):7001-15. PubMed ID: 23791503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracortical brain-computer interfaces for improved motor function: a systematic review.
    Holt MW; Robinson EC; Shlobin NA; Hanson JT; Bozkurt I
    Rev Neurosci; 2024 Feb; 35(2):213-223. PubMed ID: 37845811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanically-compliant intracortical implants reduce the neuroinflammatory response.
    Nguyen JK; Park DJ; Skousen JL; Hess-Dunning AE; Tyler DJ; Rowan SJ; Weder C; Capadona JR
    J Neural Eng; 2014 Oct; 11(5):056014. PubMed ID: 25125443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation.
    Li F; Gallego J; Tirko NN; Greaser J; Bashe D; Patel R; Shaker E; Van Valkenburg GE; Alsubhi AS; Wellman S; Singh V; Padilla CG; Gheres KW; Broussard JI; Bagwell R; Mulvihill M; Kozai TDY
    Nat Commun; 2024 Jun; 15(1):5512. PubMed ID: 38951525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes.
    Vasudevan S; Patel K; Welle C
    J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates.
    Malaga KA; Schroeder KE; Patel PR; Irwin ZT; Thompson DE; Nicole Bentley J; Lempka SF; Chestek CA; Patil PG
    J Neural Eng; 2016 Feb; 13(1):016010. PubMed ID: 26655972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.