These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29127383)

  • 1. Tunable Mid IR focusing in InAs based semiconductor Hyperbolic Metamaterial.
    Desouky M; Mahmoud AM; Swillam MA
    Sci Rep; 2017 Nov; 7(1):15312. PubMed ID: 29127383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free space super focusing using all dielectric hyperbolic metamaterial.
    Salama NA; Desouky M; Obayya SSA; Swillam MA
    Sci Rep; 2020 Jul; 10(1):11529. PubMed ID: 32661281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast and low power all-optical switching in the mid-infrared region based on nonlinear highly doped semiconductor hyperbolic metamaterials.
    Azmoudeh E; Farazi S
    Opt Express; 2021 Apr; 29(9):13504-13517. PubMed ID: 33985082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene based hyperbolic metamaterial for tunable mid-infrared biosensing.
    Cynthia S; Ahmed R; Islam S; Ali K; Hossain M
    RSC Adv; 2021 Feb; 11(14):7938-7945. PubMed ID: 35423319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon based mid-IR super absorber using hyperbolic metamaterial.
    Desouky M; Mahmoud AM; Swillam MA
    Sci Rep; 2018 Feb; 8(1):2036. PubMed ID: 29391401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic control of spontaneous emission rate using tunable hyperbolic metamaterials.
    Chamoli SK; ElKabbash M; Zhang J; Guo C
    Opt Lett; 2020 Apr; 45(7):1671-1674. PubMed ID: 32235970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subwavelength focusing of terahertz waves in silicon hyperbolic metamaterials.
    Kannegulla A; Cheng LJ
    Opt Lett; 2016 Aug; 41(15):3539-42. PubMed ID: 27472613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-material semiconductor hyperbolic metamaterials.
    Wei D; Harris C; Bomberger CC; Zhang J; Zide J; Law S
    Opt Express; 2016 Apr; 24(8):8735-45. PubMed ID: 27137307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active control of dielectric singularities in indium-tin-oxides hyperbolic metamaterials.
    Pianelli A; Caligiuri V; Dudek M; Kowerdziej R; Chodorow U; Sielezin K; De Luca A; Caputo R; Parka J
    Sci Rep; 2022 Oct; 12(1):16961. PubMed ID: 36217019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Planar Focusing Based on Hyperbolic Phonon Polaritons in α-MoO
    Qu Y; Chen N; Teng H; Hu H; Sun J; Yu R; Hu D; Xue M; Li C; Wu B; Chen J; Sun Z; Liu M; Liu Y; García de Abajo FJ; Dai Q
    Adv Mater; 2022 Jun; 34(23):e2105590. PubMed ID: 35238092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Far-field thermal emission from a semiconductor hyperbolic metamaterial.
    Sohr P; Ip CI; Law S
    Opt Lett; 2019 Mar; 44(5):1138-1141. PubMed ID: 30821732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-sensitive tunable planar lens based on graphene hyperbolic metamaterials.
    Wang Y; Chen J; Liang W; Li ZY
    Opt Express; 2019 Aug; 27(17):24738-24746. PubMed ID: 31510358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of emitters coupled with a polymer-based hyperbolic metamaterial.
    Issah I; Pihlava T; Rahimi Rashed A; Caglayan H
    Opt Express; 2022 Mar; 30(6):8723-8733. PubMed ID: 35299318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplication of photonic band gaps in one-dimensional photonic crystals by using hyperbolic metamaterial in IR range.
    Mohamed AG; Sabra W; Mehaney A; Aly AH; Elsayed HA
    Sci Rep; 2023 Jan; 13(1):324. PubMed ID: 36609630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable terahertz hyperbolic metamaterial slabs and super-resolving hyperlenses.
    Zhang H; Jiao Z; Mcleod E
    Appl Opt; 2020 Aug; 59(22):G64-G70. PubMed ID: 32749317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-based hyperbolic metamaterial as a switchable reflection modulator.
    Pianelli A; Kowerdziej R; Dudek M; Sielezin K; Olifierczuk M; Parka J
    Opt Express; 2020 Mar; 28(5):6708-6718. PubMed ID: 32225912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending plasmonic response to the mid-wave infrared with all-epitaxial composites.
    Muhowski AJ; Simmons E; Li K; Narimanov EE; Podolskiy VA; Wasserman D
    Opt Lett; 2022 Feb; 47(4):973-976. PubMed ID: 35167572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of Self-Collimation Effect in Photonic Crystal Membranes Using Hyperbolic Metamaterials.
    Zheng Y; Wang Q; Lin M; Ouyang Z
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combination of angle insensitive stopband/passband filters based on one-dimensional hyperbolic metamaterial quasiperiodic photonic crystals.
    Mohamed AG; Elsayed HA; Sabra W; Aly AH; Mehaney A
    RSC Adv; 2023 Jun; 13(27):18238-18252. PubMed ID: 37346952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-semiconductor active plasmonic system in mid-infrared wavelengths.
    Li D; Ning CZ
    Opt Express; 2011 Jul; 19(15):14594-603. PubMed ID: 21934822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.