These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29127456)

  • 1. Catalytic Activity Profile of Polyphosphate Kinase 1 from Myxococcus xanthus.
    Kamatani S; Takegawa K; Kimura Y
    Curr Microbiol; 2018 Apr; 75(4):379-385. PubMed ID: 29127456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic activity profile of polyP:AMP phosphotransferase from Myxococcus xanthus.
    Kimura Y; Kamatani S
    J Biosci Bioeng; 2021 Feb; 131(2):147-152. PubMed ID: 33132038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and degradation of polyphosphate in Myxococcus xanthus.
    Harita D; Nishida K; Kimura Y
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36731866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyphosphate Plays a Significant Role in the Maturation of Spores in Myxococcus xanthus.
    Harita D; Matsukawa H; Kimura Y
    Curr Microbiol; 2024 Jul; 81(8):248. PubMed ID: 38951187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic characteristics of two adenylate kinases, AdkA and AdkB, from Myxococcus xanthus.
    Kimura Y; Yamamoto H; Kamatani S
    J Biochem; 2019 Apr; 165(4):379-385. PubMed ID: 30535229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Major Enzymes Involved in the Synthesis of Diadenosine Tetraphosphate and/or Adenosine Tetraphosphate in Myxococcus xanthus.
    Kimura Y; Tanaka C; Oka M
    Curr Microbiol; 2018 Jul; 75(7):811-817. PubMed ID: 29468302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic Characteristics of a Polyphosphate/ATP-NAD Kinase, PanK, from Myxococcus xanthus.
    Kimura Y; Kamimoto T; Tanaka N
    Curr Microbiol; 2020 Feb; 77(2):173-178. PubMed ID: 31741028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inorganic polyphosphate kinase and adenylate kinase participate in the polyphosphate:AMP phosphotransferase activity of Escherichia coli.
    Ishige K; Noguchi T
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14168-71. PubMed ID: 11106368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro ATP regeneration from polyphosphate and AMP by polyphosphate:AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A.
    Resnick SM; Zehnder AJ
    Appl Environ Microbiol; 2000 May; 66(5):2045-51. PubMed ID: 10788379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational design of substrate binding pockets in polyphosphate kinase for use in cost-effective ATP-dependent cascade reactions.
    Cao H; Nie K; Li C; Xu H; Wang F; Tan T; Liu L
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5325-5332. PubMed ID: 28417169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria.
    Nocek B; Kochinyan S; Proudfoot M; Brown G; Evdokimova E; Osipiuk J; Edwards AM; Savchenko A; Joachimiak A; Yakunin AF
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17730-5. PubMed ID: 19001261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysyl-tRNA synthetase from Myxococcus xanthus catalyzes the formation of diadenosine penta- and hexaphosphates from adenosine tetraphosphate.
    Oka M; Takegawa K; Kimura Y
    Arch Biochem Biophys; 2016 Aug; 604():152-8. PubMed ID: 27392456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The multiple activities of polyphosphate kinase of Escherichia coli and their subunit structure determined by radiation target analysis.
    Tzeng CM; Kornberg A
    J Biol Chem; 2000 Feb; 275(6):3977-83. PubMed ID: 10660553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mevalonate-dependent enzymatic synthesis of amorphadiene driven by an ATP-regeneration system using polyphosphate kinase.
    Shimane M; Sugai Y; Kainuma R; Natsume M; Kawaide H
    Biosci Biotechnol Biochem; 2012; 76(8):1558-60. PubMed ID: 22878192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A universal polyphosphate kinase: PPK2c of Ralstonia eutropha accepts purine and pyrimidine nucleotides including uridine diphosphate.
    Hildenbrand JC; Teleki A; Jendrossek D
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6659-6667. PubMed ID: 32500270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyphosphate:AMP phosphotransferase and polyphosphate:ADP phosphotransferase activities of Pseudomonas aeruginosa.
    Ishige K; Noguchi T
    Biochem Biophys Res Commun; 2001 Mar; 281(3):821-6. PubMed ID: 11237733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyphosphate as a donor of high-energy phosphate for the synthesis of ADP and ATP.
    Müller WEG; Wang S; Neufurth M; Kokkinopoulou M; Feng Q; Schröder HC; Wang X
    J Cell Sci; 2017 Aug; 130(16):2747-2756. PubMed ID: 28687622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic polyphosphate in the social life of Myxococcus xanthus: motility, development, and predation.
    Zhang H; Rao NN; Shiba T; Kornberg A
    Proc Natl Acad Sci U S A; 2005 Sep; 102(38):13416-20. PubMed ID: 16174737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic characteristics of an ApaH-like phosphatase, PrpA, and a diadenosine tetraphosphate hydrolase, ApaH, from Myxococcus xanthus.
    Sasaki M; Takegawa K; Kimura Y
    FEBS Lett; 2014 Sep; 588(18):3395-402. PubMed ID: 25107648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Two Polyphosphate Kinase 2 Enzymes Used for ATP Synthesis.
    Zhang X; Cui X; Li Z
    Appl Biochem Biotechnol; 2020 Jun; 191(2):881-892. PubMed ID: 31907778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.