These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 29127461)

  • 1. Bioinspired recognition elements for mycotoxin sensors.
    Peltomaa R; Benito-Peña E; Moreno-Bondi MC
    Anal Bioanal Chem; 2018 Jan; 410(3):747-771. PubMed ID: 29127461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in mycotoxins detection.
    Chauhan R; Singh J; Sachdev T; Basu T; Malhotra BD
    Biosens Bioelectron; 2016 Jul; 81():532-545. PubMed ID: 27019032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in Biosensors, Chemosensors and Assays for the Determination of Fusarium Mycotoxins.
    Lin X; Guo X
    Toxins (Basel); 2016 May; 8(6):. PubMed ID: 27231937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review.
    Goud KY; Kailasa SK; Kumar V; Tsang YF; Lee SE; Gobi KV; Kim KH
    Biosens Bioelectron; 2018 Dec; 121():205-222. PubMed ID: 30219721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Status and Future Prospects for Aptamer-Based Mycotoxin Detection.
    Ruscito A; Smith M; Goudreau DN; DeRosa MC
    J AOAC Int; 2016 Jul; 99(4):865-877. PubMed ID: 27318356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New biorecognition molecules in biosensors for the detection of toxins.
    Bazin I; Tria SA; Hayat A; Marty JL
    Biosens Bioelectron; 2017 Jan; 87():285-298. PubMed ID: 27568847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Trends in Mycotoxin Detection with Various Types of Biosensors.
    Majer-Baranyi K; Adányi N; Székács A
    Toxins (Basel); 2023 Nov; 15(11):. PubMed ID: 37999508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical affinity biosensors for detection of mycotoxins: A review.
    Vidal JC; Bonel L; Ezquerra A; Hernández S; Bertolín JR; Cubel C; Castillo JR
    Biosens Bioelectron; 2013 Nov; 49():146-58. PubMed ID: 23743326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycotoxin Determination in Foods Using Advanced Sensors Based on Antibodies or Aptamers.
    Xu L; Zhang Z; Zhang Q; Li P
    Toxins (Basel); 2016 Aug; 8(8):. PubMed ID: 27529281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis.
    Elfadil D; Lamaoui A; Della Pelle F; Amine A; Compagnone D
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Recognition Receptors for Electrochemical Biosensing of Mycotoxins-A Review.
    Kaur M; Gaba J; Singh K; Bhatia Y; Singh A; Singh N
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors.
    Cao Y; Feng T; Xu J; Xue C
    Biosens Bioelectron; 2019 Sep; 141():111447. PubMed ID: 31238279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosensors based on core-shell nanoparticles for detecting mycotoxins in food: A review.
    Zhai W; Wei D; Cao M; Wang Z; Wang M
    Food Chem; 2023 Dec; 429():136944. PubMed ID: 37487389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in the development of novel materials for mycotoxin analysis.
    Maragos CM
    Anal Bioanal Chem; 2009 Nov; 395(5):1205-13. PubMed ID: 19300984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of biosensing techniques for detection of trace carcinogen contamination in food products.
    Li Z; Yu Y; Li Z; Wu T
    Anal Bioanal Chem; 2015 Apr; 407(10):2711-26. PubMed ID: 25694149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective tools for the solid-phase extraction of Ochratoxin A from various complex samples: immunosorbents, oligosorbents, and molecularly imprinted polymers.
    Pichon V; Combès A
    Anal Bioanal Chem; 2016 Oct; 408(25):6983-99. PubMed ID: 27585915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid synthetic receptor composed of molecularly imprinted polydopamine and aptamers for impedimetric biosensing of urea.
    Yarahmadi S; Azadbakht A; Derikvand RM
    Mikrochim Acta; 2019 Jan; 186(2):71. PubMed ID: 30627876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Mycotoxins in Food Using Surface-Enhanced Raman Spectroscopy: A Review.
    Martinez L; He L
    ACS Appl Bio Mater; 2021 Jan; 4(1):295-310. PubMed ID: 35014285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers.
    Hua Y; Ahmadi Y; Sonne C; Kim KH
    Environ Pollut; 2022 Jul; 305():119218. PubMed ID: 35364185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecularly Imprinted Polymer as an Antibody Substitution in Pseudo-immunoassays for Chemical Contaminants in Food and Environmental Samples.
    Chen C; Luo J; Li C; Ma M; Yu W; Shen J; Wang Z
    J Agric Food Chem; 2018 Mar; 66(11):2561-2571. PubMed ID: 29461812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.