These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29127582)

  • 1. Lessons learned from participating in D3R 2016 Grand Challenge 2: compounds targeting the farnesoid X receptor.
    Duan R; Xu X; Zou X
    J Comput Aided Mol Des; 2018 Jan; 32(1):103-111. PubMed ID: 29127582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2.
    Athanasiou C; Vasilakaki S; Dellis D; Cournia Z
    J Comput Aided Mol Des; 2018 Jan; 32(1):21-44. PubMed ID: 29119352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding pose and affinity prediction in the 2016 D3R Grand Challenge 2 using the Wilma-SIE method.
    Hogues H; Sulea T; Gaudreault F; Corbeil CR; Purisima EO
    J Comput Aided Mol Des; 2018 Jan; 32(1):143-150. PubMed ID: 28983727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ranking docking poses by graph matching of protein-ligand interactions: lessons learned from the D3R Grand Challenge 2.
    da Silva Figueiredo Celestino Gomes P; Da Silva F; Bret G; Rognan D
    J Comput Aided Mol Des; 2018 Jan; 32(1):75-87. PubMed ID: 28766097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016.
    Fradera X; Verras A; Hu Y; Wang D; Wang H; Fells JI; Armacost KA; Crespo A; Sherborne B; Wang H; Peng Z; Gao YD
    J Comput Aided Mol Des; 2018 Jan; 32(1):113-127. PubMed ID: 28913710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort.
    Gao YD; Hu Y; Crespo A; Wang D; Armacost KA; Fells JI; Fradera X; Wang H; Wang H; Sherborne B; Verras A; Peng Z
    J Comput Aided Mol Des; 2018 Jan; 32(1):129-142. PubMed ID: 28986733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lessons learned in induced fit docking and metadynamics in the Drug Design Data Resource Grand Challenge 2.
    Baumgartner MP; Evans DA
    J Comput Aided Mol Des; 2018 Jan; 32(1):45-58. PubMed ID: 29127581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the affinity of Farnesoid X Receptor ligands through a hierarchical ranking protocol: a D3R Grand Challenge 2 case study.
    Réau M; Langenfeld F; Zagury JF; Montes M
    J Comput Aided Mol Des; 2018 Jan; 32(1):231-238. PubMed ID: 28913743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015.
    Xu X; Yan C; Zou X
    J Comput Aided Mol Des; 2017 Aug; 31(8):689-699. PubMed ID: 28668990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Docking of small molecules to farnesoid X receptors using AutoDock Vina with the Convex-PL potential: lessons learned from D3R Grand Challenge 2.
    Kadukova M; Grudinin S
    J Comput Aided Mol Des; 2018 Jan; 32(1):151-162. PubMed ID: 28913782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R Grand Challenge 2.
    Kurkcuoglu Z; Koukos PI; Citro N; Trellet ME; Rodrigues JPGLM; Moreira IS; Roel-Touris J; Melquiond ASJ; Geng C; Schaarschmidt J; Xue LC; Vangone A; Bonvin AMJJ
    J Comput Aided Mol Des; 2018 Jan; 32(1):175-185. PubMed ID: 28831657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2019 Jan; 33(1):47-59. PubMed ID: 30084081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D3R Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies.
    Gaieb Z; Liu S; Gathiaka S; Chiu M; Yang H; Shao C; Feher VA; Walters WP; Kuhn B; Rudolph MG; Burley SK; Gilson MK; Amaro RE
    J Comput Aided Mol Des; 2018 Jan; 32(1):1-20. PubMed ID: 29204945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding free energy predictions of farnesoid X receptor (FXR) agonists using a linear interaction energy (LIE) approach with reliability estimation: application to the D3R Grand Challenge 2.
    Rifai EA; van Dijk M; Vermeulen NPE; Geerke DP
    J Comput Aided Mol Des; 2018 Jan; 32(1):239-249. PubMed ID: 28889350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP.
    Schindler C; Rippmann F; Kuhn D
    J Comput Aided Mol Des; 2018 Jan; 32(1):265-272. PubMed ID: 28900792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CDOCKER and λ-dynamics for prospective prediction in D₃R Grand Challenge 2.
    Ding X; Hayes RL; Vilseck JZ; Charles MK; Brooks CL
    J Comput Aided Mol Des; 2018 Jan; 32(1):89-102. PubMed ID: 28884249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2.
    Salmaso V; Sturlese M; Cuzzolin A; Moro S
    J Comput Aided Mol Des; 2018 Jan; 32(1):251-264. PubMed ID: 28840418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving ligand 3D shape similarity-based pose prediction with a continuum solvent model.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2019 Dec; 33(12):1045-1055. PubMed ID: 31463704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding affinities of the farnesoid X receptor in the D3R Grand Challenge 2 estimated by free-energy perturbation and docking.
    Olsson MA; García-Sosa AT; Ryde U
    J Comput Aided Mol Des; 2018 Jan; 32(1):211-224. PubMed ID: 28879536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges.
    Nguyen DD; Cang Z; Wu K; Wang M; Cao Y; Wei GW
    J Comput Aided Mol Des; 2019 Jan; 33(1):71-82. PubMed ID: 30116918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.