BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29128422)

  • 1. Ampholytic starch excipients for high loaded drug formulations: Mechanistic insights.
    Sakeer K; Ispas-Szabo P; Benyerbah N; Mateescu MA
    Int J Pharm; 2018 Jan; 535(1-2):201-216. PubMed ID: 29128422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Stabilizing Ampholytic Starch Excipients for Sustained Release of Highly Soluble Drugs: the Case Study of Metformin.
    Sakeer K; Ispas-Szabo P; Mateescu MA
    AAPS PharmSciTech; 2017 Oct; 18(7):2658-2672. PubMed ID: 28271374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-linked high amylose starch derivatives as matrices for controlled release of high drug loadings.
    Mulhbacher J; Ispas-Szabo P; Lenaerts V; Mateescu MA
    J Control Release; 2001 Sep; 76(1-2):51-8. PubMed ID: 11532312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carboxymethyl Starch Excipients for Drug Chronodelivery.
    Ispas-Szabo P; De Koninck P; Calinescu C; Mateescu MA
    AAPS PharmSciTech; 2017 Jul; 18(5):1673-1682. PubMed ID: 27686941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ampholytic and Polyelectrolytic Starch as Matrices for Controlled Drug Delivery.
    Benyerbah N; Ispas-Szabo P; Sakeer K; Chapdelaine D; Mateescu MA
    Pharmaceutics; 2019 Jun; 11(6):. PubMed ID: 31159403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of protonation ratio on properties of carboxymethyl starch excipient at various substitution degrees: Structural insights and drug release kinetics.
    Assaad E; Mateescu MA
    Int J Pharm; 2010 Jul; 394(1-2):75-84. PubMed ID: 20435114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxymethyl starch and lecithin complex as matrix for targeted drug delivery: I. Monolithic mesalamine forms for colon delivery.
    Mihaela Friciu M; Canh Le T; Ispas-Szabo P; Mateescu MA
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):521-30. PubMed ID: 23562535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spray-dried high-amylose sodium carboxymethyl starch: impact of α-amylase on drug-release profile.
    Nabais T; Zaraa S; Leclair G
    Drug Dev Ind Pharm; 2016 Nov; 42(11):1887-93. PubMed ID: 27109692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-amylose sodium carboxymethyl starch matrices for oral, sustained drug-release: formulation aspects and in vitro drug-release evaluation.
    Brouillet F; Bataille B; Cartilier L
    Int J Pharm; 2008 May; 356(1-2):52-60. PubMed ID: 18280069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-amylose carboxymethyl starch matrices for oral sustained drug-release: in vitro and in vivo evaluation.
    Nabais T; Brouillet F; Kyriacos S; Mroueh M; Amores da Silva P; Bataille B; Chebli C; Cartilier L
    Eur J Pharm Biopharm; 2007 Mar; 65(3):371-8. PubMed ID: 17275270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two release rates from monolithic carboxymethyl starch tablets: formulation, characterization, and in vitro/in vivo evaluation.
    Le TC; Mateescu MA
    Drug Deliv Transl Res; 2017 Aug; 7(4):516-528. PubMed ID: 28386870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyelectrolyte complex of carboxymethyl starch and chitosan as protein carrier: oral administration of ovalbumin.
    Assaad E; Blemur L; Lessard M; Mateescu MA
    J Biomater Sci Polym Ed; 2012; 23(13):1713-28. PubMed ID: 21967707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carboxymethyl high amylose starch as excipient for controlled drug release: mechanistic study and the influence of degree of substitution.
    Lemieux M; Gosselin P; Mateescu MA
    Int J Pharm; 2009 Dec; 382(1-2):172-82. PubMed ID: 19716866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending.
    Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA
    Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of dibutyrylchitin as new excipient for sustained drug release.
    Casettari L; Cespi M; Castagnino E
    Drug Dev Ind Pharm; 2012 Aug; 38(8):979-84. PubMed ID: 22124336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial least square projections to latent structures analysis (PLS) in evaluating and predicting drug release from starch acetate matrix tablets.
    Korhonen O; Matero S; Poso A; Ketolainen J
    J Pharm Sci; 2005 Dec; 94(12):2716-30. PubMed ID: 16258997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxymethyl starch: Chitosan monolithic matrices containing diamine oxidase and catalase for intestinal delivery.
    Calinescu C; Mondovi B; Federico R; Ispas-Szabo P; Mateescu MA
    Int J Pharm; 2012 May; 428(1-2):48-56. PubMed ID: 22402476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-stabilized chitosan and its complexes with carboxymethyl starch as excipients in drug delivery.
    Leonida M; Ispas-Szabo P; Mateescu MA
    Bioact Mater; 2018 Sep; 3(3):334-340. PubMed ID: 29988516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anthocyanins Formulated with Carboxymethyl Starch for Gastric and Intestinal Delivery.
    De Sousa Sabino LB; Copes F; Saulais S; De Brito ES; Da Silva Júnior IJ; Le TC; Mateescu MA; Mantovani D
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets.
    Lin SY; Lin KH; Li MJ
    J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.