BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29128524)

  • 1. Numerical study of the airflow structures in an idealized mouth-throat under light and heavy breathing intensities using large eddy simulation.
    Cui X; Wu W; Gutheil E
    Respir Physiol Neurobiol; 2018 Jan; 248():1-9. PubMed ID: 29128524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large eddy simulation of the flow pattern in an idealized mouth-throat under unsteady inspiration flow conditions.
    Cui X; Gutheil E
    Respir Physiol Neurobiol; 2018 Jun; 252-253():38-46. PubMed ID: 29518555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of the impact of glottis properties on the airflow field in the human trachea using V-LES.
    Chen W; Wang L; Chen L; Ge H; Cui X
    Respir Physiol Neurobiol; 2022 Jan; 295():103784. PubMed ID: 34517114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large eddy simulation of the unsteady flow-field in an idealized human mouth-throat configuration.
    Cui XG; Gutheil E
    J Biomech; 2011 Nov; 44(16):2768-74. PubMed ID: 21937045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of airflow field in the upper airway under unsteady respiration pattern using large eddy simulation method.
    Cui X; Wu W; Ge H
    Respir Physiol Neurobiol; 2020 Aug; 279():103468. PubMed ID: 32505518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways.
    Naseri A; Shaghaghian S; Abouali O; Ahmadi G
    Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Investigation of Flow Characteristics in the Obstructed Realistic Human Upper Airway.
    Liu X; Yan W; Liu Y; Choy YS; Wei Y
    Comput Math Methods Med; 2016; 2016():3181654. PubMed ID: 27725841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental measurements of particle deposition in three proximal lung bifurcation models with an idealized mouth-throat.
    Zhang Y; Finlay WH
    J Aerosol Med; 2005; 18(4):460-73. PubMed ID: 16379621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow simulation in the human upper respiratory tract.
    Martonen TB; Quan L; Zhang Z; Musante CJ
    Cell Biochem Biophys; 2002; 37(1):27-36. PubMed ID: 12398415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns in pharyngeal airflow associated with sleep-disordered breathing.
    Powell NB; Mihaescu M; Mylavarapu G; Weaver EM; Guilleminault C; Gutmark E
    Sleep Med; 2011 Dec; 12(10):966-74. PubMed ID: 22036604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airflow and Particle Transport Prediction through Stenosis Airways.
    Singh P; Raghav V; Padhmashali V; Paul G; Islam MS; Saha SC
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32050584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation.
    Rahimi-Gorji M; Gorji TB; Gorji-Bandpy M
    Comput Biol Med; 2016 Jul; 74():1-17. PubMed ID: 27160637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Numerical simulation on cycle change form of the pressure and wall shear in human upper respiratory tract].
    Li F; Xu X; Sun D; Zhao X; Tan S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):409-14. PubMed ID: 23858771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scale resolving simulations of the effect of glottis motion and the laryngeal jet on flow dynamics during respiration.
    Emmerling J; Vahaji S; Morton DAV; Fletcher DF; Inthavong K
    Comput Methods Programs Biomed; 2024 Apr; 247():108064. PubMed ID: 38382308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results.
    Elcner J; Lizal F; Jedelsky J; Jicha M; Chovancova M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):447-69. PubMed ID: 26163996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of dynamic glottis and tidal breathing on respiratory sounds in a human upper airway model.
    Xi J; Wang Z; Talaat K; Glide-Hurst C; Dong H
    Sleep Breath; 2018 May; 22(2):463-479. PubMed ID: 29101633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realistic glottal motion and airflow rate during human breathing.
    Scheinherr A; Bailly L; Boiron O; Lagier A; Legou T; Pichelin M; Caillibotte G; Giovanni A
    Med Eng Phys; 2015 Sep; 37(9):829-39. PubMed ID: 26159687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LES modelling of flow in a simple airway model.
    Luo XY; Hinton JS; Liew TT; Tan KK
    Med Eng Phys; 2004 Jun; 26(5):403-13. PubMed ID: 15147748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical investigation of airflow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model.
    Xu XY; Ni SJ; Fu M; Zheng X; Luo N; Weng WG
    J Therm Biol; 2017 Dec; 70(Pt A):53-63. PubMed ID: 29074026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Simulation of Tidal Breathing Through the Human Respiratory Tract.
    Azarnoosh J; Sreenivas K; Arabshahi A
    J Biomech Eng; 2020 Jun; 142(6):. PubMed ID: 31956902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.