BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29128663)

  • 1. Chirality-dependent cell adhesion and enrichment in Janus nanocomposite hydrogels.
    Motealleh A; Hermes H; Jose J; Kehr NS
    Nanomedicine; 2018 Feb; 14(2):247-256. PubMed ID: 29128663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Janus Nanocomposite Hydrogels for Chirality-Dependent Cell Adhesion and Migration.
    Motealleh A; Seda Kehr N
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33674-33682. PubMed ID: 28880531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantiomorphous Periodic Mesoporous Organosilica-Based Nanocomposite Hydrogel Scaffolds for Cell Adhesion and Cell Enrichment.
    Kehr NS
    Biomacromolecules; 2016 Mar; 17(3):1117-22. PubMed ID: 26811946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocomposite (Janus) paper as 3D cell culture system.
    Kehr NS; Motealleh A
    Colloids Surf B Biointerfaces; 2017 Aug; 156():236-242. PubMed ID: 28535472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Janus enantiomorphous nanomaterial assembly on substrate surfaces for chirality-dependent cell adhesion.
    Kehr NS
    Colloids Surf B Biointerfaces; 2017 Nov; 159():125-130. PubMed ID: 28780459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Cell Growth and Cell Migration in Periodic Mesoporous Organosilica/Alginate Nanocomposite Hydrogels.
    Seda Kehr N; Riehemann K
    Adv Healthc Mater; 2016 Jan; 5(2):193-7. PubMed ID: 26648333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodic mesoporous organosilica-based nanocomposite hydrogels as three-dimensional scaffolds.
    Kehr NS; Prasetyanto EA; Benson K; Ergün B; Galstyan A; Galla HJ
    Angew Chem Int Ed Engl; 2013 Jan; 52(4):1156-60. PubMed ID: 23203726
    [No Abstract]   [Full Text] [Related]  

  • 8. Functional Nanomaterials and 3D-Printable Nanocomposite Hydrogels for Enhanced Cell Proliferation and for the Reduction of Bacterial Biofilm Formation.
    Motealleh A; Kart D; Czieborowski M; Kehr NS
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43755-43768. PubMed ID: 34464080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D bioprinting of triphasic nanocomposite hydrogels and scaffolds for cell adhesion and migration.
    Motealleh A; Dorri P; Schäfer AH; Kehr NS
    Biofabrication; 2019 May; 11(3):035022. PubMed ID: 30943459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled monolayers and nanocomposite hydrogels of functional nanomaterials for tissue engineering applications.
    Kehr NS; Atay S; Ergün B
    Macromol Biosci; 2015 Apr; 15(4):445-63. PubMed ID: 25515073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatically cross-linked hyaluronic acid/graphene oxide nanocomposite hydrogel with pH-responsive release.
    Song F; Hu W; Xiao L; Cao Z; Li X; Zhang C; Liao L; Liu L
    J Biomater Sci Polym Ed; 2015; 26(6):339-52. PubMed ID: 25598448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocomposite Hydrogels and Their Applications in Tissue Engineering.
    Motealleh A; Kehr NS
    Adv Healthc Mater; 2017 Jan; 6(1):. PubMed ID: 27900856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels.
    Huang Y; Yao M; Zheng X; Liang X; Su X; Zhang Y; Lu A; Zhang L
    Biomacromolecules; 2015 Nov; 16(11):3499-507. PubMed ID: 26393272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoresponsive nanocomposite hydrogels with cell-releasing behavior.
    Hou Y; Matthews AR; Smitherman AM; Bulick AS; Hahn MS; Hou H; Han A; Grunlan MA
    Biomaterials; 2008 Aug; 29(22):3175-84. PubMed ID: 18455788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel.
    Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A
    Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics.
    Gaharwar AK; Rivera C; Wu CJ; Chan BK; Schmidt G
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1800-7. PubMed ID: 23827639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocomposite Hydrogels as Platform for Cells Growth, Proliferation, and Chemotaxis.
    Fiorini F; Prasetyanto EA; Taraballi F; Pandolfi L; Monroy F; López-Montero I; Tasciotti E; De Cola L
    Small; 2016 Sep; 12(35):4881-4893. PubMed ID: 27364463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels.
    Liu GF; Zhang D; Feng CL
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7789-93. PubMed ID: 24917055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery.
    Li X; Zhou L; Wei Y; El-Toni AM; Zhang F; Zhao D
    J Am Chem Soc; 2014 Oct; 136(42):15086-92. PubMed ID: 25251874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-healing in nanocomposite hydrogels.
    Haraguchi K; Uyama K; Tanimoto H
    Macromol Rapid Commun; 2011 Aug; 32(16):1253-8. PubMed ID: 21732467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.