BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29128725)

  • 1. Flame deflagration in side-on vented detonation tubes: A large scale study.
    Ajrash MJ; Zanganeh J; Moghtaderi B
    J Hazard Mater; 2018 Mar; 345():38-47. PubMed ID: 29128725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evaluation and analysis of methane fire and explosion mitigation using isolation valves integrated with a vent system.
    Ajrash MJ; Zanganeh J; Moghtaderi B
    J Hazard Mater; 2017 Oct; 339():301-309. PubMed ID: 28658639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of suspended coal dusts on methane deflagration properties in a large-scale straight duct.
    Ajrash MJ; Zanganeh J; Moghtaderi B
    J Hazard Mater; 2017 Sep; 338():334-342. PubMed ID: 28582714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of deflagration flame propagation of methane-air in tube by argon gas and explosion-eliminating chamber.
    Wang Q; Xu X; Chang W; Li Z; Zhang J; Li R
    Sci Rep; 2022 Mar; 12(1):4965. PubMed ID: 35322805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on noise-vibration coupling characteristics of premixed methane-air flame propagation in a tube with an acoustic absorption material.
    Wang Q; Chang W; Liu S; Li Z; Zhu K
    RSC Adv; 2019 Sep; 9(49):28323-28329. PubMed ID: 35529608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Study of External Flame Evolution and Temperature Characteristics after a Methane Explosion in a Rectangular Chamber.
    Xing H; Xu G; Yu R; Li X; Qiu Y; Li B; Xie L
    ACS Omega; 2023 Jun; 8(22):19822-19832. PubMed ID: 37305240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the Influence of Vent Shape and Blockage Ratio on the Premixed Gas Explosion in the Chamber with a Small Aspect Ratio.
    Jia H; Cui B; Duan Y; Zheng K
    ACS Omega; 2022 Jul; 7(26):22787-22796. PubMed ID: 35811877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section.
    Duan Q; Xiao H; Gao W; Gong L; Sun J
    J Hazard Mater; 2016 Dec; 320():18-26. PubMed ID: 27505290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deflagration to detonation transition in JP-10 mist/air mixtures in a large-scale tube.
    Li S; Liu Q; Chen X; Huang J; Li J
    J Hazard Mater; 2017 Oct; 339():100-113. PubMed ID: 28633081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High methane natural gas/air explosion characteristics in confined vessel.
    Tang C; Zhang S; Si Z; Huang Z; Zhang K; Jin Z
    J Hazard Mater; 2014 Aug; 278():520-8. PubMed ID: 25010457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Venting of gas explosion through relief ducts: interaction between internal and external explosions.
    Ferrara G; Willacy SK; Phylaktou HN; Andrews GE; Di Benedetto A; Salzano E; Russo G
    J Hazard Mater; 2008 Jun; 155(1-2):358-68. PubMed ID: 18187258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Different Bifurcation Angles on the Flame Propagation of Gas Explosions in Three-Way Bifurcated Pipes.
    Xie B; Luan Z; Chen D; Zhong S; Ding H; Du Y
    ACS Omega; 2022 Jun; 7(25):21845-21859. PubMed ID: 35785322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive.
    Cao X; Ren J; Zhou Y; Wang Q; Gao X; Bi M
    J Hazard Mater; 2015 Mar; 285():311-8. PubMed ID: 25528229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study on using water mist containing potassium compounds to suppress methane/air explosions.
    Liu Z; Zhong X; Zhang Q; Lu C
    J Hazard Mater; 2020 Jul; 394():122561. PubMed ID: 32248030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flame acceleration and the development of detonation in fuel-oxygen mixtures at elevated temperatures and pressures.
    Thomas GO
    J Hazard Mater; 2009 Apr; 163(2-3):783-94. PubMed ID: 18782653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration.
    Valiev DM; Bychkov V; Akkerman V; Eriksson LE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036317. PubMed ID: 19905222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study on vented explosion overpressure of methane/air mixtures in manhole.
    Li P; Huang P; Liu Z; Du B; Li M
    J Hazard Mater; 2019 Jul; 374():349-355. PubMed ID: 31026628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of compressibility in moderating flame acceleration in tubes.
    Bychkov V; Akkerman V; Valiev D; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026309. PubMed ID: 20365653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.
    Ivanov MF; Kiverin AD; Liberman MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056313. PubMed ID: 21728653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of Methane Explosion and Dynamic Response of Rock Mass in an H-Type Roadway with Different Ignition Sources.
    Dou X; Zhang S; Manzoor MU; Wen X
    ACS Omega; 2023 Dec; 8(49):46513-46522. PubMed ID: 38107950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.