These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29129278)

  • 21. Artificial light at night as a new threat to pollination.
    Knop E; Zoller L; Ryser R; Gerpe C; Hörler M; Fontaine C
    Nature; 2017 Aug; 548(7666):206-209. PubMed ID: 28783730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decadal trends in the pollinator assemblage of Eucryphia cordifolia in Chilean rainforests.
    Smith-Ramírez C; Ramos-Jiliberto R; Valdovinos FS; Martínez P; Castillo JA; Armesto JJ
    Oecologia; 2014 Sep; 176(1):157-69. PubMed ID: 25001339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change.
    Wolkovich EM; Davies TJ; Schaefer H; Cleland EE; Cook BI; Travers SE; Willis CG; Davis CC
    Am J Bot; 2013 Jul; 100(7):1407-21. PubMed ID: 23797366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal dynamics influenced by global change: bee community phenology in urban, agricultural, and natural landscapes.
    Leong M; Ponisio LC; Kremen C; Thorp RW; Roderick GK
    Glob Chang Biol; 2016 Mar; 22(3):1046-53. PubMed ID: 26663622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fragmentation and management of Ethiopian moist evergreen forest drive compositional shifts of insect communities visiting wild Arabica coffee flowers.
    Berecha G; Aerts R; Muys B; Honnay O
    Environ Manage; 2015 Feb; 55(2):373-82. PubMed ID: 25355631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Additive effects of exotic plant abundance and land-use intensity on plant-pollinator interactions.
    Grass I; Berens DG; Peter F; Farwig N
    Oecologia; 2013 Nov; 173(3):913-23. PubMed ID: 23817775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fruitful factors: what limits seed production of flowering plants in the alpine?
    Straka JR; Starzomski BM
    Oecologia; 2015 May; 178(1):249-60. PubMed ID: 25447635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change.
    Macgregor CJ; Scott-Brown AS
    Emerg Top Life Sci; 2020 Jul; 4(1):19-32. PubMed ID: 32478390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phenology determines the robustness of plant-pollinator networks.
    Ramos-Jiliberto R; Moisset de Espanés P; Franco-Cisterna M; Petanidou T; Vázquez DP
    Sci Rep; 2018 Oct; 8(1):14873. PubMed ID: 30291278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of climate change on Lepidoptera pollen loads and their pollination services in space and time.
    Balmaki B; Rostami MA; Allen JM; Dyer LA
    Oecologia; 2024 Apr; 204(4):751-759. PubMed ID: 38523192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling of pollination services and coffee suitability under climate change.
    Imbach P; Fung E; Hannah L; Navarro-Racines CE; Roubik DW; Ricketts TH; Harvey CA; Donatti CI; Läderach P; Locatelli B; Roehrdanz PR
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10438-10442. PubMed ID: 28893985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale.
    Doré M; Fontaine C; Thébault E
    Glob Chang Biol; 2021 Mar; 27(6):1266-1280. PubMed ID: 33274540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patterns and Processes in Nocturnal and Crepuscular Pollination Services.
    Borges RM; Somanathan H; Kelber A
    Q Rev Biol; 2016 Dec; 91(4):389-418. PubMed ID: 29562117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heated rivalries: Phenological variation modifies competition for pollinators among arctic plants.
    Tiusanen M; Kankaanpää T; Schmidt NM; Roslin T
    Glob Chang Biol; 2020 Nov; 26(11):6313-6325. PubMed ID: 32914477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative pollen limitation and pollinator activity of Caragana korshinskii Kom in natural and fragmented habitats.
    Chen M; Zhao XY; Zuo XA
    Sci Total Environ; 2019 Mar; 654():1056-1063. PubMed ID: 30841380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pollinator peaking earlier than flowering is more detrimental to plant fecundity.
    Wang W; Du J; He Z; Miao C; Wu J; Ma D; Zhao P
    Sci Total Environ; 2024 Mar; 917():170458. PubMed ID: 38290677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hidden effects of habitat restoration on the persistence of pollination networks.
    Gaiarsa MP; Bascompte J
    Ecol Lett; 2022 Oct; 25(10):2132-2141. PubMed ID: 36006740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global warming and plant-pollinator mismatches.
    Gérard M; Vanderplanck M; Wood T; Michez D
    Emerg Top Life Sci; 2020 Jul; 4(1):77-86. PubMed ID: 32558904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Climate-associated phenological advances in bee pollinators and bee-pollinated plants.
    Bartomeus I; Ascher JS; Wagner D; Danforth BN; Colla S; Kornbluth S; Winfree R
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20645-9. PubMed ID: 22143794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of climate change on alpine plants and their pollinators.
    Inouye DW
    Ann N Y Acad Sci; 2020 Jun; 1469(1):26-37. PubMed ID: 31025387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.