These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2912969)

  • 1. Active and inactive forms of the transition-state analog protease inhibitor leupeptin: explanation of the observed slow binding of leupeptin to cathepsin B and papain.
    Schultz RM; Varma-Nelson P; Ortiz R; Kozlowski KA; Orawski AT; Pagast P; Frankfater A
    J Biol Chem; 1989 Jan; 264(3):1497-507. PubMed ID: 2912969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The slow, tight-binding inhibition of cathepsin B by leupeptin. A hysteretic effect.
    Baici A; Gyger-Marazzi M
    Eur J Biochem; 1982 Dec; 129(1):33-41. PubMed ID: 7160384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of Gly-4 of human cystatin A (stefin A) in the binding of target proteinases. Characterization by kinetic and equilibrium methods of the interactions of cystatin A Gly-4 mutants with papain, cathepsin B, and cathepsin L.
    Estrada S; Nycander M; Hill NJ; Craven CJ; Waltho JP; Björk I
    Biochemistry; 1998 May; 37(20):7551-60. PubMed ID: 9585570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteolytic modification of rat liver fructose-1,6-bisphosphate aldolase by administration of leupeptin in vivo.
    Kominami E; Hashida S; Katunuma N
    Biochim Biophys Acta; 1981 Jun; 659(2):378-89. PubMed ID: 7020765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the specificity of cysteine proteinases at subsites remote from the active site: analysis of P4, P3, P2' and P3' variations in extended substrates.
    Portaro FC; Santos AB; Cezari MH; Juliano MA; Juliano L; Carmona E
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):123-9. PubMed ID: 10727410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective inhibition of proteolytic enzymes in an in vivo mouse model for experimental metastasis.
    Ostrowski LE; Ahsan A; Suthar BP; Pagast P; Bain DL; Wong C; Patel A; Schultz RM
    Cancer Res; 1986 Aug; 46(8):4121-8. PubMed ID: 3089587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of inhibition of cathepsin K by potent, selective 1, 5-diacylcarbohydrazides: a new class of mechanism-based inhibitors of thiol proteases.
    Bossard MJ; Tomaszek TA; Levy MA; Ijames CF; Huddleston MJ; Briand J; Thompson S; Halpert S; Veber DF; Carr SA; Meek TD; Tew DG
    Biochemistry; 1999 Nov; 38(48):15893-902. PubMed ID: 10625455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of N-terminal region residues of cystatin A (stefin A) to the affinity and kinetics of inhibition of papain, cathepsin B, and cathepsin L.
    Estrada S; Pavlova A; Björk I
    Biochemistry; 1999 Jun; 38(22):7339-45. PubMed ID: 10353845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible covalent binding of peptide nitriles to papain.
    Hanzlik RP; Zygmunt J; Moon JB
    Biochim Biophys Acta; 1990 Jul; 1035(1):62-70. PubMed ID: 2383580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cathepsin B in the growth of colorectal cancer: suppressive effect of leupeptin on the growth of DMH-induced rat colon neoplasm.
    Satoh Y; Higashi T; Nouso K; Shiota T; Kinugasa N; Yoshida K; Uematsu S; Nakatsukasa H; Nishimura Y; Tsuji T
    Acta Med Okayama; 1996 Dec; 50(6):299-303. PubMed ID: 8985466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of papain as a model for the structure-based design of cathepsin K inhibitors: crystal structures of two papain-inhibitor complexes demonstrate binding to S'-subsites.
    LaLonde JM; Zhao B; Smith WW; Janson CA; DesJarlais RL; Tomaszek TA; Carr TJ; Thompson SK; Oh HJ; Yamashita DS; Veber DF; Abdel-Meguid SS
    J Med Chem; 1998 Nov; 41(23):4567-76. PubMed ID: 9804696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significant effects of Z-Gln-Val-Val-OME, common sequences of thiol proteinase inhibitors on thiol proteinases.
    Teno N; Tsuboi S; Itoh N; Okamoto H; Okada Y
    Biochem Biophys Res Commun; 1987 Mar; 143(2):749-52. PubMed ID: 3566746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potent slow-binding inhibition of cathepsin B by its propeptide.
    Fox T; de Miguel E; Mort JS; Storer AC
    Biochemistry; 1992 Dec; 31(50):12571-6. PubMed ID: 1472493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid proteolytic activities in mouse liver and muscle tissues after treatment with protease inhibitor leupeptin.
    Salminen A; Kihlström M; Vihko V
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 79(1):93-5. PubMed ID: 6149885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general framework of cysteine-proteinase mechanism deduced from studies on enzymes with structurally different analogous catalytic-site residues Asp-158 and -161 (papain and actinidin), Gly-196 (cathepsin B) and Asn-165 (cathepsin H). Kinetic studies up to pH 8 of the hydrolysis of N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide catalysed by cathepsin B and of L-arginine 2-naphthylamide catalysed by cathepsin H.
    Willenbrock F; Brocklehurst K
    Biochem J; 1985 Apr; 227(2):521-8. PubMed ID: 3890831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow-binding inhibition of chymotrypsin and cathepsin G by the peptide aldehyde chymostatin.
    Stein RL; Strimpler AM
    Biochemistry; 1987 May; 26(9):2611-5. PubMed ID: 3607037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of an enzyme reducing leupeptin acid to leupeptin.
    Suzukake K; Hori M; Tamemasa O; Umezawa H
    Biochim Biophys Acta; 1981 Oct; 661(2):175-81. PubMed ID: 7295735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation-based virtual screening for designing novel antimalarial drugs by targeting falcipain-III: a structure-based drug designing approach.
    Kesharwani RK; Singh DV; Misra K
    J Vector Borne Dis; 2013; 50(2):93-102. PubMed ID: 23995310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human cathepsin B. Application of the substrate N-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide to a study of the inhibition by leupeptin.
    Knight CG
    Biochem J; 1980 Sep; 189(3):447-53. PubMed ID: 7213339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 1,4-naphthoquinone scaffold in the design of cysteine protease inhibitors.
    Valente C; Moreira R; Guedes RC; Iley J; Jaffar M; Douglas KT
    Bioorg Med Chem; 2007 Aug; 15(15):5340-50. PubMed ID: 17532221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.