These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29129755)

  • 21. Structural and motional contributions of the Bacillus subtilis ClpC N-domain to adaptor protein interactions.
    Kojetin DJ; McLaughlin PD; Thompson RJ; Dubnau D; Prepiak P; Rance M; Cavanagh J
    J Mol Biol; 2009 Apr; 387(3):639-52. PubMed ID: 19361434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP.
    Hoskins JR; Singh SK; Maurizi MR; Wickner S
    Proc Natl Acad Sci U S A; 2000 Aug; 97(16):8892-7. PubMed ID: 10922051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins.
    Krüger E; Witt E; Ohlmeier S; Hanschke R; Hecker M
    J Bacteriol; 2000 Jun; 182(11):3259-65. PubMed ID: 10809708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the N-terminal repeat domain of Escherichia coli ClpA-A class I Clp/HSP100 ATPase.
    Lo JH; Baker TA; Sauer RT
    Protein Sci; 2001 Mar; 10(3):551-9. PubMed ID: 11344323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ClpP hydrolyzes a protein substrate processively in the absence of the ClpA ATPase: mechanistic studies of ATP-independent proteolysis.
    Jennings LD; Lun DS; Médard M; Licht S
    Biochemistry; 2008 Nov; 47(44):11536-46. PubMed ID: 18839965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular determinants of MecA as a degradation tag for the ClpCP protease.
    Mei Z; Wang F; Qi Y; Zhou Z; Hu Q; Li H; Wu J; Shi Y
    J Biol Chem; 2009 Dec; 284(49):34366-75. PubMed ID: 19767395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The tyrosine kinase McsB is a regulated adaptor protein for ClpCP.
    Kirstein J; Dougan DA; Gerth U; Hecker M; Turgay K
    EMBO J; 2007 Apr; 26(8):2061-70. PubMed ID: 17380125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of the ClpA chaperone in proteolysis by ClpAP.
    Hoskins JR; Pak M; Maurizi MR; Wickner S
    Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12135-40. PubMed ID: 9770452
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MecA, an adaptor protein necessary for ClpC chaperone activity.
    Schlothauer T; Mogk A; Dougan DA; Bukau B; Turgay K
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2306-11. PubMed ID: 12598648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA.
    Weber-Ban EU; Reid BG; Miranker AD; Horwich AL
    Nature; 1999 Sep; 401(6748):90-3. PubMed ID: 10485712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase.
    Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA
    Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ClpA and ClpP remain associated during multiple rounds of ATP-dependent protein degradation by ClpAP protease.
    Singh SK; Guo F; Maurizi MR
    Biochemistry; 1999 Nov; 38(45):14906-15. PubMed ID: 10555973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity.
    Andersson FI; Blakytny R; Kirstein J; Turgay K; Bukau B; Mogk A; Clarke AK
    J Biol Chem; 2006 Mar; 281(9):5468-75. PubMed ID: 16361263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ATPγS competes with ATP for binding at Domain 1 but not Domain 2 during ClpA catalyzed polypeptide translocation.
    Miller JM; Lucius AL
    Biophys Chem; 2014 Jan; 185():58-69. PubMed ID: 24362308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ClpE, a novel member of the HSP100 family, is involved in cell division and virulence of Listeria monocytogenes.
    Nair S; Frehel C; Nguyen L; Escuyer V; Berche P
    Mol Microbiol; 1999 Jan; 31(1):185-96. PubMed ID: 9987121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Processive degradation of proteins by the ATP-dependent Clp protease from Escherichia coli. Requirement for the multiple array of active sites in ClpP but not ATP hydrolysis.
    Thompson MW; Singh SK; Maurizi MR
    J Biol Chem; 1994 Jul; 269(27):18209-15. PubMed ID: 8027082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The CtsR regulator controls the expression of clpC, clpE and clpP and is required for the virulence of Enterococcus faecalis in an invertebrate model.
    Cassenego AP; de Oliveira NE; Laport MS; Abranches J; Lemos JA; Giambiagi-deMarval M
    Antonie Van Leeuwenhoek; 2016 Sep; 109(9):1253-9. PubMed ID: 27388279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Concurrent chaperone and protease activities of ClpAP and the requirement for the N-terminal ClpA ATP binding site for chaperone activity.
    Pak M; Hoskins JR; Singh SK; Maurizi MR; Wickner S
    J Biol Chem; 1999 Jul; 274(27):19316-22. PubMed ID: 10383442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Localization of general and regulatory proteolysis in Bacillus subtilis cells.
    Kirstein J; Strahl H; Molière N; Hamoen LW; Turgay K
    Mol Microbiol; 2008 Nov; 70(3):682-94. PubMed ID: 18786145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A molecular chaperone, ClpA, functions like DnaK and DnaJ.
    Wickner S; Gottesman S; Skowyra D; Hoskins J; McKenney K; Maurizi MR
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12218-22. PubMed ID: 7991609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.