BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29129936)

  • 1. Infrared Energy Harvesting in Millimeter-Scale GaAs Photovoltaics.
    Moon E; Blaauw D; Phillips JD
    IEEE Trans Electron Devices; 2017 Nov; 64(11):4554-4560. PubMed ID: 29129936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcutaneous Photovoltaic Infrared Energy Harvesting for Bio-Implantable Devices.
    Moon E; Blaauw D; Phillips JD
    IEEE Trans Electron Devices; 2017 May; 64(5):2432-2437. PubMed ID: 29056754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.
    Han N; Yang ZX; Wang F; Dong G; Yip S; Liang X; Hung TF; Chen Y; Ho JC
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20454-9. PubMed ID: 26284305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-area Si Photovoltaics for Low-Flux Infrared Energy Harvesting.
    Moon E; Blaauw D; Phillips JD
    IEEE Trans Electron Devices; 2017 Jan; 64(1):15-20. PubMed ID: 34650311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy Harvesting for GaAs Photovoltaics Under Low-Flux Indoor Lighting Conditions.
    Teran AS; Moon E; Lim W; Kim G; Lee I; Blaauw D; Phillips JD
    IEEE Trans Electron Devices; 2016 Jul; 63(7):2820-2825. PubMed ID: 28133394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon nitride grating based planar spectral splitting concentrator for NIR light harvesting.
    Elikkottil A; Tahersima MH; Gupta S; Sorger VJ; Pesala B
    Opt Express; 2020 Jul; 28(15):21474-21480. PubMed ID: 32752424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Junction GaAs Photovoltaics for Low Irradiance Wireless Power Transfer in Submillimeter-Scale Sensor Nodes.
    Moon E; Barrow M; Lim J; Blaauw D; Phillips JD
    IEEE J Photovolt; 2020 Nov; 10(6):1721-1726. PubMed ID: 33224555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.
    Gai B; Sun Y; Lim H; Chen H; Faucher J; Lee ML; Yoon J
    ACS Nano; 2017 Jan; 11(1):992-999. PubMed ID: 28075560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures.
    Lee SM; Kwong A; Jung D; Faucher J; Biswas R; Shen L; Kang D; Lee ML; Yoon J
    ACS Nano; 2015 Oct; 9(10):10356-65. PubMed ID: 26376087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Efficiency Photovoltaic Modules on a Chip for Millimeter-Scale Energy Harvesting.
    Moon E; Lee I; Blaauw D; Phillips JD
    Prog Photovolt; 2019 Jun; 27(6):540-546. PubMed ID: 34354330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Passivation of III-V GaAs Nanopillars by Low-Frequency Plasma Deposition of Silicon Nitride for Active Nanophotonic Devices.
    Jacob B; Camarneiro F; Borme J; Bondarchuk O; Nieder JB; Romeira B
    ACS Appl Electron Mater; 2022 Jul; 4(7):3399-3410. PubMed ID: 36570334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of GaAs(100) surface preparation on EQE of AZO/Al
    Caban P; Pietruszka R; Kaszewski J; Ożga M; Witkowski BS; Kopalko K; Kuźmiuk P; Gwóźdź K; Płaczek-Popko E; Lawniczak-Jablonska K; Godlewski M
    Beilstein J Nanotechnol; 2021; 12():578-592. PubMed ID: 34285862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials.
    Shang Y; Hao S; Yang C; Chen G
    Nanomaterials (Basel); 2015 Oct; 5(4):1782-1809. PubMed ID: 28347095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indoor light energy harvesting for battery-powered sensors using small photovoltaic modules.
    Shore A; Roller J; Bergeson J; Hamadani BH
    Energy Sci Eng; 2021 Nov; 9(11):. PubMed ID: 37533957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined micro- and nano-scale surface textures for enhanced near-infrared light harvesting in silicon photovoltaics.
    Chang CH; Yu P; Hsu MH; Tseng PC; Chang WL; Sun WC; Hsu WC; Hsu SH; Chang YC
    Nanotechnology; 2011 Mar; 22(9):095201. PubMed ID: 21258142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CuI as a Hole-Selective Contact for GaAs Solar Cells.
    Haggren T; Raj V; Haggren A; Gagrani N; Jagadish C; Tan H
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):52918-52926. PubMed ID: 36383741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending the Photovoltaic Response of Perovskite Solar Cells into the Near-Infrared with a Narrow-Bandgap Organic Semiconductor.
    Zhao X; Yao C; Liu T; Hamill JC; Ngongang Ndjawa GO; Cheng G; Yao N; Meng H; Loo YL
    Adv Mater; 2019 Dec; 31(49):e1904494. PubMed ID: 31523862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterojunction photovoltaics using GaAs nanowires and conjugated polymers.
    Ren S; Zhao N; Crawford SC; Tambe M; Bulović V; Gradecak S
    Nano Lett; 2011 Feb; 11(2):408-13. PubMed ID: 21171629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical engineering of infrared PbS CQD photovoltaic cells for wireless optical power transfer systems.
    Zhu M; Zhang Y; Lu S; Wang Z; Zhou J; Ma W; Zhu R; Chen G; Zhang J; Gao L; Yu J; Gao P; Tang J
    Front Optoelectron; 2023 Jun; 16(1):15. PubMed ID: 37318647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Analysis of Graphene-Sheet-Based GaAs Schottky Solar Cell for Enriched Efficiency.
    Phimu LK; Dhar RS; Singh KJ; Banerjee A
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.