These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29130069)

  • 1. Label-free nanopore single-molecule measurement of trypsin activity.
    Zhou S; Wang L; Chen X; Guan X
    ACS Sens; 2016 May; 1(5):607-613. PubMed ID: 29130069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Label-Free Kinetics Monitoring of Trypsin-Catalyzed Ester Hydrolysis by a Nanopore Sensor.
    Li M; Rauf A; Guo Y; Kang X
    ACS Sens; 2019 Nov; 4(11):2854-2857. PubMed ID: 31684727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt-Mediated Nanopore Detection of ADAM-17.
    Chen X; Zhang Y; Roozbahani GM; Guan X
    ACS Appl Bio Mater; 2019 Jan; 2(1):504-509. PubMed ID: 32529174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-Free Nanopore Biosensor for Rapid and Highly Sensitive Cocaine Detection in Complex Biological Fluids.
    Rauf S; Zhang L; Ali A; Liu Y; Li J
    ACS Sens; 2017 Feb; 2(2):227-234. PubMed ID: 28723133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopore stochastic detection: diversity, sensitivity, and beyond.
    Wang G; Wang L; Han Y; Zhou S; Guan X
    Acc Chem Res; 2013 Dec; 46(12):2867-77. PubMed ID: 23614724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cleavage-sensing redox peptide monolayers for the rapid measurement of the proteolytic activity of trypsin and alpha-thrombin enzymes.
    Adjémian J; Anne A; Cauet G; Demaille C
    Langmuir; 2010 Jun; 26(12):10347-56. PubMed ID: 20329721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rapid and sensitive detection of HBV DNA using a nanopore sensor.
    Yao F; Zhang Y; Wei Y; Kang X
    Chem Commun (Camb); 2014 Nov; 50(89):13853-6. PubMed ID: 25260160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore.
    Di Marino D; Bonome EL; Tramontano A; Chinappi M
    J Phys Chem Lett; 2015 Aug; 6(15):2963-8. PubMed ID: 26267189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On possible trypsin-induced biases in peptides analysis with aerolysin nanopore.
    Afshar Bakshloo M; Yahiaoui S; Ouldali H; Pastoriza-Gallego M; Piguet F; Oukhaled A
    Proteomics; 2022 Jun; 22(11-12):e2100056. PubMed ID: 35357771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of Free Energy Profiles for the Translocation of Polynucleotides through α-Hemolysin Nanopores using Non-Equilibrium Molecular Dynamics Simulations.
    Martin HS; Jha S; Howorka S; Coveney PV
    J Chem Theory Comput; 2009 Aug; 5(8):2135-48. PubMed ID: 26613153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and label-free single-nucleotide discrimination via an integrative nanoparticle-nanopore approach.
    Ang YS; Yung LY
    ACS Nano; 2012 Oct; 6(10):8815-23. PubMed ID: 22994459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free nanopore proximity bioassay for platelet-derived growth factor detection.
    Zhang L; Zhang K; Liu G; Liu M; Liu Y; Li J
    Anal Chem; 2015 Jun; 87(11):5677-82. PubMed ID: 25938182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring stepwise proteolytic degradation of peptides by supramolecular domino tandem assays and mass spectrometry for trypsin and leucine aminopeptidase.
    Ghale G; Kuhnert N; Nau WM
    Nat Prod Commun; 2012 Mar; 7(3):343-8. PubMed ID: 22545408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High sensitive trypsin activity evaluation applying a nanostructured QCM-sensor.
    Stoytcheva M; Zlatev R; Cosnier S; Arredondo M; Valdez B
    Biosens Bioelectron; 2013 Mar; 41():862-6. PubMed ID: 22964383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanopore-based proteolytic reactor for sensitive and comprehensive proteomic analyses.
    Shui W; Fan J; Yang P; Liu C; Zhai J; Lei J; Yan Y; Zhao D; Chen X
    Anal Chem; 2006 Jul; 78(14):4811-9. PubMed ID: 16841899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore.
    Zhang X; Price NE; Fang X; Yang Z; Gu LQ; Gates KS
    ACS Nano; 2015 Dec; 9(12):11812-9. PubMed ID: 26563913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single Molecule Nanopore Spectrometry for Peptide Detection.
    Chavis AE; Brady KT; Hatmaker GA; Angevine CE; Kothalawala N; Dass A; Robertson JWF; Reiner JE
    ACS Sens; 2017 Sep; 2(9):1319-1328. PubMed ID: 28812356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time monitoring of peptide cleavage using a nanopore probe.
    Zhao Q; de Zoysa RS; Wang D; Jayawardhana DA; Guan X
    J Am Chem Soc; 2009 May; 131(18):6324-5. PubMed ID: 19368382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanopore Single-Molecule Analysis of Metal Ion-Chelator Chemical Reaction.
    Wang L; Yao F; Kang XF
    Anal Chem; 2017 Aug; 89(15):7958-7965. PubMed ID: 28675027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.