BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 29130899)

  • 1. Semiconductor quantum dot super-emitters: spontaneous emission enhancement combined with suppression of defect environment using metal-oxide plasmonic metafilms.
    Sadeghi SM; Wing WJ; Gutha RR; Sharp C
    Nanotechnology; 2018 Jan; 29(1):015402. PubMed ID: 29130899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Balancing silicon/aluminum oxide junctions for super-plasmonic emission enhancement of quantum dots via plasmonic metafilms.
    Sadeghi SM; Wing WJ; Gutha RR; Wilt JS; Wu JZ
    Nanoscale; 2018 Mar; 10(10):4825-4832. PubMed ID: 29473074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots.
    Sadeghi SM; West RG; Nejat A
    Nanotechnology; 2011 Oct; 22(40):405202. PubMed ID: 21896983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide.
    Patty K; Sadeghi SM; Nejat A; Mao CB
    Nanotechnology; 2014 Apr; 25(15):155701. PubMed ID: 24642896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials.
    Sadeghi SM; Wing WJ; Gutha RR; Capps L
    Nanotechnology; 2017 Mar; 28(9):095701. PubMed ID: 28120813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission.
    Wing WJ; Sadeghi SM; Gutha RR; Campbell Q; Mao C
    J Appl Phys; 2015 Sep; 118(12):124302. PubMed ID: 26442574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Biexciton Emission Due to Long-Range Interaction of Single Quantum Dots and Gold Nanorods in a Thin-Film Hybrid Nanostructure.
    Krivenkov V; Goncharov S; Samokhvalov P; Sánchez-Iglesias A; Grzelczak M; Nabiev I; Rakovich Y
    J Phys Chem Lett; 2019 Feb; 10(3):481-486. PubMed ID: 30616347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna.
    Matsuzaki K; Vassant S; Liu HW; Dutschke A; Hoffmann B; Chen X; Christiansen S; Buck MR; Hollingsworth JA; Götzinger S; Sandoghdar V
    Sci Rep; 2017 Feb; 7():42307. PubMed ID: 28195140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast emission decay with high emission efficiency of quantum dots in plasmonic-dielectric metasubstrates.
    Wing WJ; Sadeghi SM; Gutha RR
    J Phys Condens Matter; 2017 Jul; 29(29):295301. PubMed ID: 28604367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects.
    Hatef A; Sadeghi SM; Singh MR
    Nanotechnology; 2012 May; 23(20):205203. PubMed ID: 22543983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh Brightening of Infrared PbS Quantum Dots via Collective Energy Transfer Induced by a Metal-Oxide Plasmonic Metastructure.
    Sadeghi SM; Gutha RR; Hatef A; Goul R; Wu JZ
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11913-11921. PubMed ID: 32083841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots.
    Ozel T; Nizamoglu S; Sefunc MA; Samarskaya O; Ozel IO; Mutlugun E; Lesnyak V; Gaponik N; Eychmuller A; Gaponenko SV; Demir HV
    ACS Nano; 2011 Feb; 5(2):1328-34. PubMed ID: 21247187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots.
    Dey S; Zhao J
    J Phys Chem Lett; 2016 Aug; 7(15):2921-9. PubMed ID: 27411778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiative Auger process in the single-photon limit.
    Löbl MC; Spinnler C; Javadi A; Zhai L; Nguyen GN; Ritzmann J; Midolo L; Lodahl P; Wieck AD; Ludwig A; Warburton RJ
    Nat Nanotechnol; 2020 Jul; 15(7):558-562. PubMed ID: 32541943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates.
    Patty K; Sadeghi SM; Campbell Q; Hamilton N; West RG; Mao C
    J Appl Phys; 2014 Sep; 116(11):114301. PubMed ID: 25316953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire.
    Li Q; Pan D; Wei H; Xu H
    Nano Lett; 2018 Mar; 18(3):2009-2015. PubMed ID: 29485884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Interfacial Alloying versus "Volume Scaling" on Auger Recombination in Compositionally Graded Semiconductor Quantum Dots.
    Park YS; Lim J; Makarov NS; Klimov VI
    Nano Lett; 2017 Sep; 17(9):5607-5613. PubMed ID: 28776995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-Assisted Suppression of Surface Trap States and Enhanced Band-Edge Emission in a Bare CdTe Quantum Dot.
    Flatae AM; Tantussi F; Messina GC; De Angelis F; Agio M
    J Phys Chem Lett; 2019 Jun; 10(11):2874-2878. PubMed ID: 31084012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast spontaneous emission source using plasmonic nanoantennas.
    Hoang TB; Akselrod GM; Argyropoulos C; Huang J; Smith DR; Mikkelsen MH
    Nat Commun; 2015 Jul; 6():7788. PubMed ID: 26212857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bright Nonblinking Photoluminescence with Blinking Lifetime from a Nanocavity-Coupled Quantum Dot.
    Wang Z; Tang J; Han J; Xia J; Ma T; Chen XW
    Nano Lett; 2024 Feb; 24(5):1761-1768. PubMed ID: 38261791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.